

Documento de Instalación del

Nodo Autonómico

Minsait

Agosto 2025

 Página 1 de 65

Histórico de versiones:

Versión Realizado por: Fecha

1.0 Minsait 17/07/2025

1.1 Minsait 30/07/2025

1.2 Minsait 08/08/2025

1.3 Minsait 13/08/2025

1.4 Minsait 14/08/2025

1.5 Minsait 18/08/2025

1.6 Minsait 22/08/2025

1.7 Minsait 04/09/2025

1.8 Minsait 12/09/2025

Contenido

1. Objetivo ...4

2. Requisitos de la instalación ..4

2.1. Infraestructura para el despliegue de Onesait Healthcare ... 4

2.2. Preconfiguración del clúster de Kubernetes para el despliegue de Onesait Healthcare

 .. 4

2.2.1. Creación namespace dentro del clúster ..4

2.2.2. Creación de credenciales para Docker Registry ...5

2.2.3. Configuración de Gateway Controller ...5

2.3. Helm como gestor de paquetes para el despliegue de Onesait Healthcare 14

2.3.1. Instalación Helm desde Rancher .. 14

2.3.2. Instalación Helm desde Openshift ... 15

2.3.3. Instalación Helm mediante helm client .. 17

3. Instalación Paquete MDM ... 18

3.1. Módulos que incluye ... 18

3.2. Prerrequisitos ... 18

3.2.1. Prerrequisitos de Base de Datos ... 18

3.3. Procedimiento de despliegue de Capa de Persistencia ... 19

3.4. Paso previo a despliegue de módulos – certificado del dominio 19

3.5. Procedimiento de despliegue de Módulos .. 19

3.5. Operaciones post-instalación ... 22

3.5.1. Scripts POST .. 22

3.5.2. OHSSO ... 22

3.5.3. OHCONF ... 23

3.5.4. OHONT ... 24

 Página 2 de 65

3.5.5. OHAUT.. 25

3.5.6. CONFIGURACIÓN DEFINITIVA OHSSO ... 25

4. Instalación Paquete DATA .. 28

4.1. Módulos que incluye ... 28

4.2. Prerrequisitos ... 28

4.2.1. Prerrequisitos de Base de Datos ... 28

4.3. Procedimiento de despliegue de Capa de Persistencia ... 29

4.3.1. MySQL .. 29

4.4. Procedimiento de despliegue de Módulos .. 29

4.5. Operaciones post-instalación ... 31

4.5.1. Visor Historia Clínica (OH_HDA) ... 31

4.5.2. Consent Manager (OH_CSM) ... 31

5. Instalación Paquete Integration & Interoperability ... 33

5.1. Módulos que incluye ... 33

5.2. Prerrequisitos ... 33

5.3. Pasos previos a la instalación .. 34

5.3.1. StorageClass ... 34

Ejemplo 1: EKS con aprovisionamiento automático habilitado (EBS CSI Driver) 34

Ejemplo 2: EKS sin aprovisionamiento automático habilitado 34

5.4. Procedimiento de despliegue de Módulos .. 35

5.4.1. Instalación de OHIEN con helm .. 35

5.4.2. Operaciones post-instalación .. 37

5.4.3. Instalación de Camel K con Helm ... 39

6. Instalación Paquete Monitorización .. 41

6.1. Módulos que incluye ... 41

6.2. Prerrequisitos ... 41

6.3. Procedimiento de despliegue de Capa de Persistencia ... 42

6.4. Procedimiento de despliegue de Módulos .. 42

6.5. Operaciones post-instalación ... 42

7. Instalación Paquete Analytics ... 43

7.01. Instalación Módulo Ingesta ... 43

7.1. Módulos que incluye ... 43

7.2. Prerrequisitos ... 43

7.2.1. Prerrequisitos de Base de Datos ... 43

7.3. Procedimiento de despliegue de Capa de Persistencia ... 43

 Página 3 de 65

7.4. Procedimiento de despliegue de Módulos .. 43

7.02. Instalación Framework BI ... 45

7.1. Módulos que incluye ... 45

7.2. Prerrequisitos ... 46

7.2.1. Prerrequisitos de Base de Datos ... 46

7.2.2. Prerrequisitos PV .. 46

7.3. Procedimiento de despliegue de Módulos .. 47

7.4. Operaciones post-instalación ... 49

8. Instalación Paquete Process Management ... 51

8.1. Módulos que incluye ... 51

8.2. Prerrequisitos ... 51

8.2.1. Prerrequisito KEYCLOACK ... 51

8.2.2. Prerrequisitos de Base de Datos ... 53

8.3. Procedimiento de despliegue de Capa de Persistencia ... 54

8.4. Procedimiento de despliegue de Módulos .. 55

8.5. Operaciones post-instalación ... 57

8.5.1. Process Manager (OH_BPM) .. 57

8.5.2. Program Manager (OH_PRM) ... 59

8.5.3. Forms Builder (OH_GEN) ... 59

ANEXO: Configuración para varios entornos en el mismo clúster de kubernetes 62

Preparación del nuevo namespace ... 62

Opción 1: Configuración del Gateway HTTP en el nuevo namespace 62

Opción 2: Configuración del Gateway HTTPS en el nuevo namespace 63

Configuración DNS para el nuevo entorno .. 64

 Página 4 de 65

1. Objetivo

El presente documento tiene como finalidad describir de forma detallada el proceso de

instalación, configuración y validación de los componentes que integran el Nodo Autonómico

de la plataforma UNICAS. Incluye los requisitos previos, la guía de instalación de cada

paquete funcional, las dependencias entre módulos y las consideraciones técnicas

necesarias para garantizar un despliegue exitoso y conforme a las especificaciones del

proyecto.

Este documento servirá como referencia para los equipos técnicos responsables de la

implantación, asegurando la homogeneidad y la calidad en la instalación de los distintos

entornos.

2. Requisitos de la instalación

2.1. Infraestructura para el despliegue de Onesait Healthcare

Onesait Healthcare es una plataforma modular que se distribuye de forma totalmente

contenerizada y permite su despliegue tanto en entornos On Premise como en proveedores

Cloud como AWS, Microsoft Azure o Google Cloud.

Con respecto a la infraestructura necesaria para su despliegue, se necesitará tener

disponible los siguientes elementos:

• Load Balancer donde se expondrán los servicios de la plataforma hacia el exterior y

permite el balanceo de carga y alta disponibilidad de la plataforma

• Nombre de dominio configurado y certificados para ese dominio correctamente

configurados a nivel de balanceador. Este nombre de dominio se deberá informar

durante el despliegue de los diferentes módulos de la solución.

• Docker Container Registry donde desplegar las imágenes de los módulos que forman

parte de la plataforma Onesait Healthcare y van a ser desplegadas en cada uno de

los entornos.

• Base de datos relacional (Oracle o Mysql).

• Clúster de Kubernetes en versión 1.30 o superior

• Máquina virtual adicional con acceso al clúster y que disponga de los clientes de línea

de comando "kubectl" y "helm" instalados.

2.2. Preconfiguración del clúster de Kubernetes para el despliegue de Onesait

Healthcare

2.2.1. Creación namespace dentro del clúster

• Crear el namespace para la instalación de los módulos de la solución, normalmente

a este namespace se le llama: oh-modules. Se puede crear mediante el comando:

kubectl create namespace
kubectl create namespace oh-modules

 Página 5 de 65

2.2.2. Creación de credenciales para Docker Registry

Se requiere un Docker Registry que contendrá las imágenes Docker de los módulos de

Onesait Healthcare.

Se debe crear un secret con las credenciales para poder acceder a dicho Registry.

• Crear un secret con las credenciales para el Docker Registry, el nombre de este

secret debe ser: oh-docker-creds, se crearía con un comando de esta forma:

kubectl create secret
kubectl create secret docker-registry oh-docker-creds --docker-server=<host-del-

docker-registry> --docker-username=<user-docker-registry> --docker-

password=<pass-docker-registry> -n oh-modules

2.2.3. Configuración de Gateway Controller

Se requiere instalar y configurar una implementación de la Gateway API de Kubernetes y

habilitar el Gateway Controller. Esta guía usa la implementación de traefik.

Esta configuración está ideada para una única instancia. Si se requiere una tipología múltiple

ver “ANEXO: Configuración para varios entornos en el mismo clúster de kubernetes”.

Instalación de traefik y configuración como Gateway Controller

Si el clúster en el que se va a realizar el despliegue ya tiene traefik instalado ignorar este

apartado.

Para comprobar si traefik está instalado

kubectl get pods -n traefik

Si se obtiene algún resultado traefik está instalado.

Para instalar traefik ejecutamos los siguientes comandos.
kubectl create namespace traefik

helm repo add traefik https://helm.traefik.io/traefik

helm repo update

helm search repo traefik/traefik --versions

Del último comando anterior apuntar la versión deseada a instalar (como mínimo 34.2.0),

lanzar el siguiente comando para obtener los valores por defecto de la instalación de traefik:

helm show values traefik/traefik --version 34.2.0 > values_traefik.yaml

Editamos el fichero obtenido (se puede usar nano o el editor que se desee):

nano values_traefik.yaml

Buscamos la cadena: providers.kubernetesGateway.enabled, que tendrá el valor false y

lo cambiamos a true, guardamos los cambios en el fichero (con nano sería CTRL+O, enter

para confirmar, CTRL+X).

 Página 6 de 65

Finalmente instalamos traefik con el fichero de parámetros modificado:

helm install traefik --values=values_traefik.yaml --namespace traefik --set

dashboard.enabled=true traefik/traefik --version 34.2.0

Una vez finalice la instalación comprobar que el pod de traefik se crea y queda en estado

Running con el comando:

kubectl get pods --namespace traefik

Configuración Gateway Controller en instalación traefik existente

Si el clúster en el que se va a realizar el despliegue ya tiene traefik instalado, pero no tiene

habilitado el Gateway Controller (por ejemplo, en la instalación por defecto de k3s), se

deberán seguir los pasos de este apartado.

En caso de que traefik esté instalado y configurado como Gateway Controller se ignorará

este apartado.

Para comprobar si traefik está habilitado como Gateway Controller se lanza el siguiente

comando control el clúster:

kubectl get gatewayclasses

Si está habilitado obtendremos una respuesta de esta forma:

NAME CONTROLLER ACCEPTED AGE

traefik traefik.io/gateway-controller True 2d22h

Si no se obtienen resultados no se tiene habilitado ningún gateway controller, si se obtienen

resultados que no contienen la clase traefik es que hay instaladas otras implementaciones

de gateway controller.

Para habilitarlo creamos los recursos de la

URL: https://doc.traefik.io/traefik/providers/kubernetes-gateway/

Ejecutando el siguiente comando:

kubectl apply -f https://github.com/kubernetes-sigs/gateway-

api/releases/download/v1.2.1/standard-install.yaml

Hay que añadir ciertos permisos al service account de traefik, para ello creamos el siguiente

ClusterRole:

traefik-gateway-role
apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

https://doc.traefik.io/traefik/providers/kubernetes-gateway/

 Página 7 de 65

 name: traefik-gateway-role

rules:

 - apiGroups:

 - ""

 resources:

 - namespaces

 verbs:

 - list

 - watch

 - apiGroups:

 - ""

 resources:

 - services

 - secrets

 - configmaps

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - discovery.k8s.io

 resources:

 - endpointslices

 verbs:

 - list

 - watch

 - apiGroups:

 - gateway.networking.k8s.io

 resources:

 - gatewayclasses

 - gateways

 - httproutes

 - grpcroutes

 - tcproutes

 - tlsroutes

 - referencegrants

 - backendtlspolicies

 verbs:

 - get

 - list

 - watch

 - apiGroups:

 - gateway.networking.k8s.io

 resources:

 - gatewayclasses/status

 - gateways/status

 - httproutes/status

 - grpcroutes/status

 - tcproutes/status

 - tlsroutes/status

 - referencegrants/status

 - backendtlspolicies/status

 verbs:

 - update

Asignamos los permisos creando el siguiente ClusterRoleBinding:

 Página 8 de 65

traefik-gateway-role-binding
apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

 name: traefik-gateway-role-binding

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: traefik-gateway-role

subjects:

 - kind: ServiceAccount

 name: traefik

 namespace: <namespace de instalación de traefik, suele ser traefik o kube-

system>

Finalmente habilitamos el Gateway Controller accediendo al Deployment de traefik (en el

namespace de instalación de traefik, que suele ser traefik o kube-system), y en la sección

de argumentos se le añade el siguiente:

- '--providers.kubernetesgateway'

Se crea el GatewayClass:

traefik
apiVersion: gateway.networking.k8s.io/v1

kind: GatewayClass

metadata:

 name: traefik

 namespace: <namespace de instalación de traefik, suele ser traefik o kube-system>

spec:

 controllerName: traefik.io/gateway-controller

Tras recrear el pod de traefix con el kubernetesgateway debería aparecernos la

GatewayClass de traefik

Si estamos en rancher sería visible en el menú:

More Resources -> Gateway.Networking y dentro de este: GatewayClasses

 Página 9 de 65

Creación del Gateway HTTP

Si la configuración de HTTPS para el dominio que se expone se realiza en un balanceador

externo el Gateway se creará como HTTP y el balanceador es el que gestiona las conexiones

HTTPS y expone el certificado y vuelca las peticiones a los nodos worker del clúster.

Una vez traefik se encuentra instalado y configurado como Gateway Controller creamos el

Gateway importando el siguiente yaml (el Gateway se debe llamar "oh-modules-gateway"

ya que los charts de helm hacen referencia a dicho nombre tal cual):

oh-modules-gateway
apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 name: oh-modules-gateway

 namespace: <namespace, normalmente oh-modules>

spec:

 gatewayClassName: traefik

 listeners:

 - allowedRoutes:

 namespaces:

 from: Same

 name: <namespace, normalmente oh-modules>

 hostname: <host-expuesto, debe coincidir con el expuesto en el balanceador>

 port: 8000

 protocol: HTTP

Por ejemplo, para el clúster de desarrollo quedaría:

oh-modules-gateway
apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 name: oh-modules-gateway

 namespace: oh-modules

spec:

 gatewayClassName: traefik

 listeners:

 - allowedRoutes:

 namespaces:

 Página 10 de 65

 from: All

 name: oh-modules

 hostname: oh-modules.ohrancherha1-1.indra.es

 port: 8000

 protocol: HTTP

Creación del Gateway HTTPS

En caso de que el balanceador no configure el HTTPS y el certificado entonces se tendrá

que crear el Gateway HTTPS.

Para ello debemos disponer del certificado del dominio, tanto la parte pública como la

privada. Teniendo los ficheros crt (parte pública del certificado en formato PEM incluyendo

el raíz y CA intermedios si los tuviera) y key (parte privada del certificado) se crearía un

secret con dicho certificado con un comando de la forma:

kubectl create secret tls <nombre-cert> --cert=<nombre-cert>.crt --key=<nombre-

cert>.key -n <namespace, normalmente oh-modules>

Una vez creado el secret creamos el Gateway importando el siguiente yaml (el Gateway se

debe llamar "oh-modules-gateway" ya que los charts de helm hacen referencia a dicho

nombre tal cual):

oh-modules-gateway
apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 name: oh-modules-gateway

 namespace: <namespace, normalmente oh-modules>

spec:

 gatewayClassName: traefik

 listeners:

 - allowedRoutes:

 namespaces:

 from: Same

 name: <namespace, normalmente oh-modules>

 hostname: <host-expuesto, debe coincidir con el expuesto en el balanceador>

 port: 8443

 protocol: HTTPS

 tls:

 mode: Terminate

 certificateRefs:

 - name: <nombre-cert>

 namespace: <namespace, normalmente oh-modules>

Creamos el Gateway

kubectl apply -f oh-modules-gateway.yaml

Comprobamos que se ha creado el Gateway

kubectl get gateways -n oh-modules

 Página 11 de 65

Creación de Network Load Balancer para AWS

Este apartado sólo aplica si la instalación se está realizando en un clúster EKS de
AWS, en caso contrario ignorar este apartado.

Se debe disponer de una Elastic IP pública registrada en AWS y un dominio que se
asociará a dicha IP.

Se accede a la consola de AWS → EC2 → Red y Seguridad → Direcciones IP elásticas,
seleccionar la IP que se tiene registrada y anotar el valor de ID de asignación (que tendrá
el prefijo eipallloc-).

Usamos ese valor para crear el siguiente yaml:

nlb-epi-to-traefik

apiVersion: v1

kind: Service

metadata:

 name: nlb-eip-to-traefik

 namespace: traefik

 annotations:

 service.beta.kubernetes.io/aws-load-balancer-attributes:

load_balancing.cross_zone.enabled=true

 service.beta.kubernetes.io/aws-load-balancer-name: "traefik-nlb"

 service.beta.kubernetes.io/aws-load-balancer-type: "nlb"

 service.beta.kubernetes.io/aws-load-balancer-eip-allocations: "<valor de

eipalloc anotado en el paso anterior>"

 service.beta.kubernetes.io/aws-load-balancer-scheme: "internet-facing"

spec:

 type: LoadBalancer

 ports:

 - name: web

 port: 80

 targetPort: 8000

 protocol: TCP

 - name: websecure

 port: 443

 targetPort: 8443

 protocol: TCP

 selector:

 app.kubernetes.io/instance: traefik-traefik

 app.kubernetes.io/name: traefik

Se crea el servicio del balanceador con el siguiente comando:

kubectl -n traefik apply -f <fichero yaml con en el que se guardó>

 Página 12 de 65

En la consola de AWS → EC2 → Equilibrio de carga → Balanceadores de carga deberá
aparece un balanceador correspondiente al servicio que hemos creado, inicialmente en
estado "Aprovisionando" y pasado un tiempo debería cambiar a "Activo".

Accedemos al detalle del balanceador y a la pestaña Mapeo de Red (se mostrará sólo una
zona) pulsar en Editar las Subredes.

Y añadimos el resto de las zonas:

Será necesario crear un gateway de internet, para ello accedemos a la consola AWS →
VPC → Nube virtual privada → Puertas de enlace de internet.

 Página 13 de 65

En la tabla de rutas pública hay que añadir la siguiente regla:

Una vez se tiene realizada esta configuración se elimina el balanceador que crea traefik
por defecto:

kubectl -n traefik delete service traefik

Y se crea de nuevo el service (sin balanceo) con el siguiente yaml;

traefik service

apiVersion: v1

kind: Service

metadata:

 name: traefik

 namespace: traefik

spec:

 ipFamilies:

 - IPv4

 ports:

 - name: web

 port: 80

 protocol: TCP

 targetPort: web

 - name: websecure

 port: 443

 protocol: TCP

 targetPort: websecure

 selector:

 app.kubernetes.io/instance: traefik-traefik

 app.kubernetes.io/name: traefik

 sessionAffinity: None

 type: ClusterIP

Ejecutando el comando:

kubectl -n traefik apply -f <fichero yaml con en el que se guardó>

 Página 14 de 65

NOTA: Este es un ejemplo de cómo hacerlo, pero no la única forma. Las anotaciones del

yalm1 dependerán de los criterios de creación del Load Balancer que decida cada Nodo

Autonómico, teniendo que ser ajustarlos al comportamiento deseado.

2.3. Helm como gestor de paquetes para el despliegue de Onesait Healthcare

La instalación de los módulos se realiza mediante charts de helm por lo tanto se debería

registrar el repositorio en la herramienta con la que se vaya la realizar la instalación.

El repositorio que contiene los charts de Onesait Healthcare es:

Repositorio Charts Onesait Healthcare
https://nexus.devops.onesait.com/repository/onesait-healthcare-helm-charts

Para acceder a este repositorio son necesarias credenciales que serán proporcionadas por

el equipo de Onesait Healthcare.

2.3.1. Instalación Helm desde Rancher

Desde un clúster de Kubernetes gestionado por Rancher se puede registrar el repositorio

Helm e instanciar los charts mediante formularios visuales.

Para ello se accede a la consola de administración de Rancher y al clúster de Kubernetes

en el que se vaya a realizar la instalación accediendo al menú Apps → Repositories y se

pulsa en Create.

Se informa el nombre y la descripción con que se desee mostrar el repositorio, el índex URL

indicada anteriormente y las credenciales de acceso proporcionadas.

Tras crearlo se mostrará el listado de repositorios y deberá aparecer el nuevo en estado

Active.

Si vamos al menú Apps → Charts y en el filtro se selecciona sólo el repositorio que hemos

creado mostrará los charts disponibles en el mismo:

1 Relación de anotaciones disponible en https://github.com/kubernetes-sigs/aws-load-balancer-
controller/blob/main/docs/guide/service/annotations.md en función de la versión finalmente instalada

https://github.com/kubernetes-sigs/aws-load-balancer-controller/blob/main/docs/guide/service/annotations.md
https://github.com/kubernetes-sigs/aws-load-balancer-controller/blob/main/docs/guide/service/annotations.md

 Página 15 de 65

Desde esta vista pulsando el en chart que se desee instalar se mostrará el README del

mismo, pulsando en Install se indica el namespace de instalación y un nombre para la

instanciación y solicitará los valores parametrizables mostrando un formulario:

2.3.2. Instalación Helm desde Openshift

En clúster Openshift se puede registrar el repositorio helm para realizar la instalación de los

charts mediante formularios visuales.

Para ello se accede al namespace donde se quiera realizar la instalación (en Openshift los

repositorios con credenciales hay que registrarlos a nivel de namespace, si se desea usar

un mismo repositorio para distintos namespaces hay que registrarlo en cada uno de ellos).

Creamos un secret con las credenciales de acceso al repositorio proporcionadas por el

equipo de Onesait Healthcare:

onesait-healthcare-helm-repo-creds
kind: Secret

apiVersion: v1

metadata:

 name: onesait-healthcare-helm-repo-creds

 namespace: <namespace>

stringData:

 username: <usuario>

 password: <password>

type: Opaque

Una vez creado el secret se crea el repositorio con el siguiente yaml:

 Página 16 de 65

onesait-healthcare-helm-repo
apiVersion: helm.openshift.io/v1beta1

kind: ProjectHelmChartRepository

metadata:

 name: onesait-healthcare-helm-repo

 namespace: <namespace>

spec:

 connectionConfig:

 basicAuthConfig:

 name: onesait-healthcare-helm-repo-creds

 url: 'https://nexus.devops.onesait.com/repository/onesait-healthcare-helm-

charts'

 description: onesait-healthcare-helm-repo

 name: onesait-healthcare-helm-repo

Si se accede a Developer → Helm → Repositories debe verse el nuevo repositorio:

Con el repositorio registrado podemos ir al menú Developer → Add -Helm Chart y filtrar por

el repositorio creado, nos mostrará los charts publicados en el mismo:

Pulsando en el que se desee instalar muestra el README, pulsando en Create nos muestra

un formulario para introducir los valores parametrizados:

 Página 17 de 65

2.3.3. Instalación Helm mediante helm client

Además de los asistentes visuales ofrecidos por Rancher y Openshift se puede seguir

usando la instalación básica mediante cliente helm.

Para ello desde una máquina del clúster con el cliente helm instalado se ejecutaría el

siguiente comando (para registrar el repositorio y las credenciales de acceso al mismo):

helm repo add
helm repo add onesait-healthcare-helm-repo

https://nexus.devops.onesait.com/repository/onesait-healthcare-helm-charts --

username <usuario> --password <password>

helm repo update

Para ver todos los charts disponibles ejecutamos el comando:

helm repo search
helm search repo --max-col-width 70

Para instalar un chart (mostramos el ejemplo con el de MDM) obtenemos los valores por

defecto:

helm show values
helm show values onesait-healthcare-helm-repo/onesaithealthcare-mdm-chart >

values_mdm.yaml

Se edita el fichero obtenido y se informan los valores de los campos que se quiera dar a la

instalación.

Se instala el chart con el comando:

helm install
helm install -f values_mdm.yaml mdm onesait-healthcare-helm-

repo/onesaithealthcare-mdm-chart -n oh-modules

 Página 18 de 65

3. Instalación Paquete MDM

3.1. Módulos que incluye

• Recursos comunes a todos los módulos
• SSO
• Settings Manager
• Ontology Server
• Users & Resources
• MPI
• Audit & Logs
• Professional Desktop

3.2. Prerrequisitos

Se deben cumplir los prerrequisitos generales y haber realizado los pasos indicados en la
guía correspondiente.

3.2.1. Prerrequisitos de Base de Datos

Se debe disponer de un gestor de base de datos MySQL que tenga visibilidad desde los
nodos worker del clúster de Kubernetes en el que se desplegarán los módulos.

A continuación, se indica como crear los usuarios y esquemas necesarios para los módulos
de MDM.

MySQL con acceso de administrador

Disponiendo de usuario administrador se pueden crear los usuarios y esquemas para los
módulos MDM con el siguiente lanzador:

[FTP_ENTREGAS]
/oradata/Versiones_Producto_OH/OH_v4/sistemas_configuraciones_iniciales_v4/md
m_scripts/MySQL/mdm-global-01-create-mysql/mdm-create-schemas-mysql.sh

Sin acceso de administrador

Si no se dispone de acceso de administrador se tendrá que solicitar la creación de los
siguientes usuarios, cada uno de ellos con un esquema sobre el que tenga permisos y con
el mismo nombre del usuario:

• us_ohsso
• us_ohcon
• us_ohont
• us_ohaut (el usuario debe tener permiso "grant option" sobre su esquema para

poder asignar permiso a otros usuarios a objetos de su esquema)
• us_ohmpi (el usuario debe tener permiso "grant option" sobre su esquema para

poder asignar permiso a otros usuarios a objetos de su esquema)

 Página 19 de 65

• us_ohatn
• us_ohatn_hist (el usuario debe tener permisos sobre su esquema y sobre el

esquema us_ohatn, también debe tener permiso "grant option" sobre su esquema y
sobre el us_ohatn)

3.3. Procedimiento de despliegue de Capa de Persistencia

Se crearán los modelos de datos de los módulos de MDM ejecutando el lanzador mdm-
create-models-mysql.sh de la carpeta:

[FTP_ENTREGAS]
/oradata/Versiones_Producto_OH/OH_v4/sistemas_configuraciones_iniciales_v4/md
m_scripts/MySQL/mdm-global-02-models-mysql

Este lanzador solicitará todos los datos necesarios del gestor de BD y usuarios y
passwords.

3.4. Paso previo a despliegue de módulos – certificado del dominio

Si el certificado usado para el dominio que se expone NO es verificable por una CA

oficial, se producirían errores en los backends de los módulos debido a que las máquinas

virtuales Java de los mismo no son capaces de verificar el certificado.

Si se da esta situación es necesario que se cree un secret con la parte pública del certificado,

la instalación de los módulos está preparada para inyectar dicho certificado en el almacén

de certificados de confianza de las máquinas virtuales Java de los contenedores con lo que

ya no se producirán errores de verificación. En caso contrario, es decir, si el certificado es

oficial no es necesario crear este secret.

Para crear este secret (IMPORTANTE EL NOMBRE DEL SECRET DEBE SER

EXACTAMENTE: cert-domain) debemos disponer de la parte pública del certificado en un

fichero .crt y ejecutar sobre el clúster un comando de la forma:

kubectl create secret
kubectl create secret generic cert-domain --from-file=tls.crt=<fichero.crt> -n

<namespace donde se vaya a realizar la instalación>

Una vez creado el secret se puede proceder a la instalación de los módulos. Hay que tener

en cuenta que hay que indicar en los parámetros del chart que el certificado del dominio ya

está instalado (esto se explica en el siguiente apartado).

3.5. Procedimiento de despliegue de Módulos

Para instalar los módulos de MDM se empleará el chart de Helm correspondiente,
onesaithealthcare-mdm-chart.

Se pueden consultar los prerrequisitos generales donde se indica el repositorio helm a
usar, así como distintas formas de instalación.

 Página 20 de 65

Se deben tener disponibles los datos de la base de datos (host, puerto, usuarios y
passwords) así como conocer el dominio con el que se exponen los módulos.

Estos son los parámetros que requiere el chart, se explica a continuación el valor que se
debe informar, los parámetros que no se mencionan en esta lista es porque tienen valores
por defecto que en la mayoría de los casos no es necesario modificarlos:

▪ global.domain.protocol: http o https, es el protocolo con el que se exponen los
módulos (normalmente https)

▪ global.domain.host: dominio con el que se exponen los módulos
▪ global.domain.gateway_type: k8s_gateway o istio, para indicar si el gateway que

se ha configurado es de la api general de kubernetes (gateway.networking.k8s.io/v1
) o de la api de istio (networking.istio.io/v1beta1)

▪ global.domain.cert_official: true o false (por defecto true), true indica que el
certificado es oficial, si el certificado no es oficial se informará false y se deberá
haber ejecutado el apartado anterior para instalar el secret

▪ global.database.type: mysql
▪ global.database.host: host o IP de la base de datos
▪ global.database.port: puerto de la base de datos
▪ global.database.props: opcional, propiedades que se añadirán a la cadena de

conexión jdbc, por ejemplo para mysql: ?serverTimezone=UTC)
▪ global.docker.registry.host: host del repositorio docker donde se encuentran las

imágenes de los módulos (por ejmplo para el caso del repositorio de onesait
healthcare el valor sería: docksdtr.indra.es)

▪ global.docker.registry.project: project del repositorio docker donde se encuentran
las imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: multhn_cmhn20_2)

▪ onesaithealthcare_ohsso_chart.ohsso.db.adminpassword: password inicial que
se asignará al usuario admin de OHSSO

▪ onesaithealthcare_ohsso_chart.ohsso.db.schema: esquema de la BD para el
módulo OHSSO

▪ onesaithealthcare_ohsso_chart.ohsso.db.user: usuario de BD para el módulo
OHSSO (normalmente será el mismo que el esquema)

▪ onesaithealthcare_ohsso_chart.ohsso.db.pass: password de BD para el módulo
OHSSO

A partir de aquí se encontrarán las mismas propiedades para el resto de módulo, lo
indicamos de forma genérica para no repetir:

▪ onesaithealthcare_<MODULO>_chart.<MODULO>.db.schema: esquema de la
BD para el módulo <MODULO>

▪ onesaithealthcare_<MODULO>_chart.<MODULO>.db.user: usuario de BD para
el módulo <MODULO> (normalmente será el mismo que el esquema)

▪ onesaithealthcare_<MODULO>_chart.<MODULO>.db.pass: password de BD
para el módulo <MODULO>

La instalación con helm client se realizaría con los siguientes comandos.

Registrar el repositorio y las credenciales de acceso al mismo (si no se ha realizado ya
previamente):

 Página 21 de 65

helm repo add
helm repo add onesait-healthcare-helm-repo

https://nexus.devops.onesait.com/repository/onesait-healthcare-helm-charts --

username <usuario> --password <password>

helm repo update

Obtenemos el values.yaml por defecto de MDM:

helm show values
helm show values onesait-healthcare-helm-repo/onesaithealthcare-mdm-chart >

values_mdm.yaml

Se edita el fichero obtenido y se informan los valores de los campos que se quiera dar a la
instalación.

Se instala el chart con el comando:

helm install
helm install -f values_mdm.yaml mdm onesait-healthcare-helm-

repo/onesaithealthcare-mdm-chart -n <namespace de instalación, normalmente oh-

modules>

El comando helm indicará deployed pero eso únicamente indica que ha sido capaz de crear
todos los recursos en el cluster, hay que esperar a que los pods terminen de levantar, para
ello chequeamos con el siguiente comando:

kubectl get pods
kubectl get pods -n <namespace de instalación>

Lo lanzaremos periodicamente hasta que veamos que todos los pods están en estado
Running con los contenedores Ready 1/1, es decir, toda la lista de pods debería acabar de
esta forma:

output kubectl get pods
NAME READY STATUS

RESTARTS AGE

<pod name> 1/1

Running 0 99m

...

En caso de que algún no se mostrara Running o presentara reinicios (columna Restarts
mayor que 0) se pueden consultar los logs del pod con el comando:

kubectl logs
kubectl logs <pod name> -n <namespace de instalación>

Para ver los eventos del pod se ejecuta el comando:

kubectl describe pod
kubectl describe pod <pod name> -n <namespace de instalación>

 Página 22 de 65

3.5. Operaciones post-instalación

Una vez se ha instanciado el helm correspondiente y todos los módulos han desplegado
correctamente se deben realizar las siguientes tareas.

3.5.1. Scripts POST

Se lanzarán los scripts post instalación ejecutando el lanzador mdm-post-mysql.sh de la
carpeta:

[FTP_ENTREGAS]
/oradata/Versiones_Producto_OH/OH_v4/sistemas_configuraciones_iniciales_v4/md
m_scripts/MySQL/mdm-global-03-post-mysql

Tras la ejecución de los scripts se deberán reiniciar los siguientes pods:

• ohaut-back
• ohont-back
• ohmpi-back

Se puede hacer ejecutando los siguientes comandos:

kubectl create secret

kubectl -n oh-modules scale deployment ohaut-back --replicas 0

kubectl -n oh-modules scale deployment ohont-back --replicas 0

kubectl -n oh-modules scale deployment ohmpi-back --replicas 0

kubectl -n oh-modules scale deployment ohaut-back --replicas 1

kubectl -n oh-modules scale deployment ohont-back --replicas 1

kubectl -n oh-modules scale deployment ohmpi-back --replicas 1

3.5.2. OHSSO

• Acceder a la consola de administración de OHSSO e importar el realm: oh-base, a
partir del fichero:

[FTP_ENTREGAS]
/oradata/Versiones_Producto_OH/OH_v4/sistemas_configuraciones_iniciales_v4/ohs
so/realm-export-oh-base.json

• Acceder a los clients: hnrole, ruleengine, oh-monitoring y hn-install, revisar
sus redirectUris y añadir la del entorno en que se está desplegando (y pulsar Save
tras añadirlas), es decir, la url pública con la que se expone desde haproxy, por
ejemplo, para el clúster de desarrollo sería: https://oh-modules.ohrancherha1-
1.indra.es/*

• En el client hn-install en la sección: Authentication Flow Overrides → Browser
Flow → seleccionar: hn_install, y pulsar Save.

• Tras realizar esta configuración será posible logarse a los módulos usando las
credenciales: us_install/12345678a

https://oh-modules.ohrancherha1-1.indra.es/*
https://oh-modules.ohrancherha1-1.indra.es/*

 Página 23 de 65

3.5.3. OHCONF

Acceder al módulo OHCON (con las credenciales indicadas anteriormente) e importar las
propiedades de los siguientes ficheros, teniendo en cuenta que NO se debe marcar la
opción de sobrescribir

• (FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_CON_v4.8.0/conf/To
tales/OHCON/OHCON_HNCONF.csv

• (FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_CON_v4.8.0/conf/To
tales/OHCON/OHCON_ISCORE.csv

• (FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_AUT_v4.9.0/conf/To
tales/OHCON/OHCON_HNAUT.csv

• (FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_MPI_v4.11.0/conf/T
otales/OHCON/OHCON_ISPOB.csv

• (FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_ONT_v4.7.0/conf/To
tales/OHCON/OHCON_HNCAT.csv

• (FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_ATN_v4.3.0/conf/To
tales/OHCON/OHCON_HNATNA.csv

Una vez cargadas las propiedades de los módulos, buscar en MPI y OHAUT la
propiedad "database.selected", como valor inicial tiene Oracle, pero según el sistema
utilizado podría otro sistema de BD, como por ejemplo MySql.

Deslogarse del módulo OHCON y volver a logarse.

 Página 24 de 65

Acceder a la opción de "Listas de trabajo" del módulo OHCON e importar el CSV de la ruta:

• (FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_CON_v4.8.0/conf/To
tales/OHCON/HNCAT_WorkList.csv

Tras estos cambios reiniciar los despliegues de ohcon-back y ohont-back con los siguientes
comandos:

kubectl create secret
kubectl -n oh-modules scale deployment ohont-back --replicas 0

kubectl -n oh-modules scale deployment ohcon-back --replicas 0

kubectl -n oh-modules scale deployment ohont-back --replicas 1

kubectl -n oh-modules scale deployment ohcon-back --replicas 1

3.5.4. OHONT

Acceder al módulo OHONT (con las credenciales indicadas anteriormente) e importar los
catálogos de los siguientes ficheros:

• (FTP ENTREGAS)
/oradata/Versiones_Producto_OH/OH_v4/OH_ONT_v4.7.0/conf/Post/CodeSyste
m

Ir al listado de ConceptMap, acceder a listado de elementos del ConceptMap
"Profesion_Roles" importar los elementos del siguiente fichero:

• (FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_ONT_v4.7.0/conf/Po
st/ConceptMap/Profesion_Roles.csv

 Página 25 de 65

3.5.5. OHAUT

Crear la configuración de los nodos de la estructura funcional de OHAUT en caso de ser
necesaria, para ello seguimos los pasos indicados en Instalación inicial configuración nodos
estructura - StructureDefinition

Tras la ejecución de los pasos realizados en los módulos anteriores, se deberán reiniciar los
siguientes pods:

• ohaut-back
• ohont-back
• ohmpi-back

3.5.6. CONFIGURACIÓN DEFINITIVA OHSSO

Tras haber importado correctamente las propiedades de OHCONF y catálogos de OHONT
y funcionar correctamente los módulos se configurará el flujo de login estándar de OHSSO
contra los profesionales registrados en OHAUT.

▪ Acceder a la consola de administración de OHSSO, al client ohsso, y regenerarle las
credenciales, anotar el nuevo secret ya que se usará en un paso posterior.

▪ Deshabilitar el client hn-install, y salvar los cambios.

▪ Deshabilitar usuario us_install y salvar los cambios.

/display/MULTHN/Instalacion+inicial+configuracion+nodos+estructura+-+StructureDefinition
/display/MULTHN/Instalacion+inicial+configuracion+nodos+estructura+-+StructureDefinition

 Página 26 de 65

• En Openshift modificar el configmap hnhome-iscore-sso-props, cambiar la
propiedad keycloak.client al valor hnrole. Cambiar keycloak.login.client_secret
con el nuevo secret regenerado en pasos anteriores, SE DEBE PEGAR
CODIFICADO EN BASE64 (USAR LA PÁGINA https://www.base64encode.org/).
Se haría con los siguientes comandos:

kubectl get configmap hnhome-iscore-sso-props -n oh-modules -o yaml > hnhome-

iscore-sso-props.yaml

-- editar el fichero para aplicar los cambios indicados

kubectl apply -f hnhome-iscore-sso-props.yaml -n oh-modules

• En Openshift modificar el configmap ohsso-configmap-realm-oh-base, cambiar la
propiedad keycloak.login.client_secret con el nuevo secret regenerado en pasos
anteriores, SE DEBE PEGAR CODIFICADO EN BASE64 (USAR LA PÁGINA
https://www.base64encode.org/). Se haría con lo siguientes comandos:

kubectl get configmap ohsso-configmap-realm-oh-base -n oh-modules -o yaml >

ohsso-configmap-realm-oh-base.yaml

-- editar el fichero para aplicar los cambios indicados

kubectl apply -f ohsso-configmap-realm-oh-base.yaml -n oh-modules

https://www.base64encode.org/
https://www.base64encode.org/

 Página 27 de 65

• En Openshift modificar el confgmap hnhome-ohsso-front, cambiar el valor del
campo resource al valor hnrole. Se haría con los siguientes comandos:

kubectl get configmap hnhome-ohsso-front -n oh-modules -o yaml > hnhome-ohsso-

front.yaml

-- editar el fichero para aplicar los cambios indicados

kubectl apply -f hnhome-ohsso-front.yaml -n oh-modules

• Reiniciar todos los pods del namespace con el siguiente comando. Una vez se
complete el reinicio ya se podrá acceder a todos los módulos con el usuario
us_admin configurado por defecto.

kubectl delete --all pods --namespace=oh-modules

 Página 28 de 65

4. Instalación Paquete DATA

4.1. Módulos que incluye

• Global Repository (OH_HDR)
• Visor Historia Clínica (OH_HDA)
• Consent Manager (OH_CSM)

4.2. Prerrequisitos

• Se deben cumplir los prerrequisitos generales y haber realizado los pasos indicados
en la guía correspondiente.

• Debe instalarse previamente el paquete MDM.

4.2.1. Prerrequisitos de Base de Datos

Se debe disponer de un gestor de base de datos MySQL que tenga visibilidad desde los
nodos worker del clúster de Kubernetes en el que se desplegarán los módulos.

A continuación, se indica como crear los usuarios y esquemas necesarios para los módulos
de DATA.

MySQL con acceso de administrador

Disponiendo de usuario administrador se pueden crear los usuarios y esquemas para los
módulos DATA con los siguientes scripts:

- Global Repository

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_HDR_v[VERSION]/bbdd/MySQL8/1-ohhdr-user.sql

- Consent Manager

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_CSM_v[VERSION]/bbdd/total/mysql/1-ohcsm-user.sql

Sin acceso de administrador

Si no se dispone de acceso de administrador se tendrá que solicitar la creación de los
siguientes usuarios, cada uno de ellos con un esquema sobre el que tenga permisos y con
el mismo nombre del usuario:

• us_hdr (el usuario debe tener permiso "grant option" sobre su esquema para poder
asignar permiso a otros usuarios a objetos de su esquema)

• us_ohcsm (el usuario debe tener permiso "grant option" sobre su esquema para
poder asignar permiso a otros usuarios a objetos de su esquema)

 Página 29 de 65

4.3. Procedimiento de despliegue de Capa de Persistencia

4.3.1. MySQL

- Global Repository

Con el usuario propio del módulo lanzar los siguientes scripts:

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_HDR_v[VERSION]/bbdd/MySQL8/2-ohhdr-create-database.sql

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_HDR_v[VERSION]/bbdd/MySQL8/3-ohhdr-tables.sql

- Consent Manager

Con el usuario propio del módulo lanzar los siguientes scripts:

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_CSM_v[VERSION]/bbdd/total/mysql/2-ohcsm-create-database.sql

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_CSM_v[VERSION]/bbdd/total/mysql/3-ohcsm-tables.ddl.sql

4.4. Procedimiento de despliegue de Módulos

Para instalar los módulos del paquete DATA se deberá realizar la instalación del chart de
Helm onesaithealthcare-data-chart. Las opciones de instalación del chart en función del
tipo de entorno vienen descritas en el apartado inicial de "Requisitos de la instalación".

La instalación con helm client se realizaría con los siguientes comandos.

Obtenemos el values.yaml por defecto de DATA:

helm show values
helm show values onesait-healthcare-helm-repo/onesaithealthcare-data-chart >

values_data.yaml

Se edita el fichero obtenido y se informan los valores de los campos que se quiera dar a la
instalación.

Se deben tener disponibles los datos de la base de datos (host, puerto, usuarios y
passwords) así como conocer el dominio con el que se exponen los módulos.

Estos son los parámetros que requiere el chart, se explica a continuación el valor que se
debe informar, los parámetros que no se mencionan en esta lista es porque tienen valores
por defecto que en la mayoría de los casos no es necesario modificarlos:

• global.domain.protocol: http o https, es el protocolo con el que se exponen los
módulos (normalmente https)

• global.domain.host: Dominio con el que se exponen los módulos

 Página 30 de 65

• global.domain.gateway_type: k8s_gateway o istio, para indicar si el gateway que
se ha configurado es de la api general de kubernetes (gateway.networking.k8s.io/v1
) o de la api de istio (networking.istio.io/v1beta1)

• global.database.type: mysql
• global.docker.registry.host: Host del repositorio docker donde se encuentran las

imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: docksdtr.indra.es)

• global.docker.registry.project: project del repositorio docker donde se encuentran
las imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: multhn_cmhn20_2)

• global.docker.registry.secret: Secret con las credenciales de acceso al docker
registry. (Por ejemplo en nuestro caso el secret sería: oh-docker-creds)

• dependencies.ohhdr/ohcsm/ohhda: Por defecto se dejan en true.
• onesaithealthcare_ohhdr_chart.ohhdr.database.url: Cadena de conexión a la

BD. (para BD MySQL sería: jdbc:mysql://database_host:port/db_schema).
• onesaithealthcare_ohhdr_chart.ohhdr.database.user: Usuario de BD para el

módulo OHHDR (normalmente será el mismo que el esquema). En este caso sería:
us_hdr

• onesaithealthcare_ohhdr_chart.ohhdr.database.pass: Password de BD para el
módulo OHHDR

• onesaithealthcare_ohcsm_chart.ohcsm.database.url: Cadena de conexión a la
BD. (para BD MySQL sería: jdbc:mysql://database_host:port/db_schema).

• onesaithealthcare_ohcsm_chart.ohcsm.database.user: Usuario de BD para el
módulo OHCSM (normalmente será el mismo que el esquema). En este caso sería:
us_ohcsm

• onesaithealthcare_ohcsm_chart.ohcsm.database.pass: Password de BD para el
módulo OHCSM.

Se instala el chart con el comando:

helm install
helm install -f values_data.yaml data onesait-healthcare-helm-

repo/onesaithealthcare-data-chart -n <namespace de instalación, normalmente oh-

modules>

El comando helm indicará deployed pero eso únicamente indica que ha sido capaz de crear
todos los recursos en el cluster, hay que esperar a que los pods terminen de levantar, para
ello chequeamos con el siguiente comando:

kubectl get pods
kubectl get pods -n <namespace de instalación>

Lo lanzaremos periódicamente hasta que veamos que todos los pods están en estado
Running con los contenedores Ready 1/1, es decir, toda la lista de pods debería acabar de
esta forma:

output kubectl get pods
NAME READY STATUS

RESTARTS AGE

<pod name> 1/1

Running 0 99m

http://gateway.networking.k8s.io/v1
http://networking.istio.io/v1beta1
http://docksdtr.indra.es/

 Página 31 de 65

...

En caso de que algún no se mostrara Running o presentara reinicios (columna Restarts
mayor que 0) se pueden consultar los logs del pod con el comando:

kubectl logs
kubectl logs <pod name> -n <namespace de instalación>

Para ver los eventos del pod se ejecuta el comando:

kubectl describe pod
kubectl describe pod <pod name> -n <namespace de instalación>

4.5. Operaciones post-instalación

4.5.1. Visor Historia Clínica (OH_HDA)

Setting

Importar los ficheros de la ruta:

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_HDA_v[VERSION]/configuración OHCON/

4.5.2. Consent Manager (OH_CSM)

Setting

Importar los ficheros de la ruta:

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_CSM_v[VERSION]/Configuración OHCON/

Ontology

• Comprobar que existe el siguiente catálogo en
Ontology: http://hl7.org/fhir/CodeSystem/CONSENT_TYPE
 - Si no existe, crearlos con las siguientes propiedades:
 Title: CONSENT_TYPE
 Name: CONSENT_TYPE
 Hierarchy: Is-A
 Content: Complete
 Status: Activo
 Properties:
 Boolean - createConsentManager
 Boolean - editConsentManager
 String - tipo
 Boolean - singleConsent

• Crear las siguientes entradas en el catálogo CONSENT_TYPE:
 * Code: CRL
 Display: Solicitar Cuidador
 tipo: C
 createConsentManager: true

http://hl7.org/fhir/CodeSystem/CONSENT_TYPE

 Página 32 de 65

 editConsentManager: true
 singleConsent: false

 * Code: IPP
 Display: Inclusión de paciente a programa
 tipo:
 createConsentManager: false
 8editConsentManager: false
 singleConsent: false

 Página 33 de 65

5. Instalación Paquete Integration & Interoperability

5.1. Módulos que incluye

• OHIEN (Control Panel)

 Panel centralizado de control para visualizar topics, grupos de consumidores,

integraciones, esquemas y estado del ecosistema Kafka.

• Clúster Kafka

Cluster de Kafka con configuración adaptada para OHIEN en modo KRaft (sin ZooKeeper).

• Kafka Connect

Plataforma de integración para conectar fuentes y destinos con Kafka, gestionado desde el

módulo Control Panel.

• Schema Registry

 Almacena y gestiona los esquemas Avro, JSON Schema y Protobuf utilizados en Kafka.

• Kafka JMX Exporter (opcional, en kafkaien)

Exponer métricas Kafka, configurable en `values.yaml`. Permite exportar MBeans estándar

como:

 - `kafka.server`, `kafka.controller`, `java.lang`, etc.

• Operador camel-k

Instalación del operador camel-k necesario para el despliegue de las integraciones

desarrolladas en camelk.

Importante:
La instalación de OHIEN y su entorno (Kafka, Kafka Connect, Schema Registry,

Control Panel) se realiza con un chart de Helm específico.

Si necesitas usar integraciones desarrolladas con Camel, debes instalar un

segundo chart para Camel K.

Ambos charts pueden instalarse de forma independiente, pero para un entorno

completo se recomienda instalar ambos.

5.2. Prerrequisitos

- Kubernetes (v1.24+)

- Helm (v 3.2+)

- Para OHIEN es necesario la instalación previa de MDM y debe realizarse sobre el mismo
namespace en el que se encuentre desplegado MDM.

 Página 34 de 65

- Se debe disponer de un StorageClass con capacidad de aprovisionamiento dinámico de
volúmenes persistentes que soporte block storage.

- Para que la instalación del operador Camel K funcione correctamente, se debe tener acceso
a un registro de contenedores Docker (tipo Docker Registry) accesible desde los nodos del
clúster, con soporte tanto para operaciones de push como de pull de imágenes. Esto es
necesario porque Camel K construye y publica imágenes personalizadas (IntegrationKits) en
tiempo de ejecución, las cuales luego serán utilizadas por las integraciones desplegadas.

5.3. Pasos previos a la instalación

5.3.1. StorageClass

Debes disponer de un StorageClass adecuado para los volúmenes persistentes de Kafka y
otros módulos. La creación dependerá de los drivers disponibles en tu clúster Kubernetes.

Importante:

Asegúrate de que el StorageClass seleccionado soporte block storage y

aprovisionamiento dinámico.

Ejemplo para AWS EKS

A continuación se muestran 2 ejemplos de configuración de StorageClass en clústeres EKS

Ejemplo 1: EKS con aprovisionamiento automático habilitado (EBS CSI Driver)

En un cluster EKS de AWS con modo automático habilitado ser puede crear el StorageClass
con los siguientes yaml.

StorageClass kafka-ebs auto mode
apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: kafka-ebs

provisioner: ebs.csi.eks.amazonaws.com

volumeBindingMode: WaitForFirstConsumer

reclaimPolicy: Retain

parameters:

 type: gp3

Ejemplo 2: EKS sin aprovisionamiento automático habilitado

En un cluster EKS de AWS sin el modo automático habilitado, el aprovisionamiento de
volúmenes EBS requiere que el EBS CSI Driver esté instalado y configurado
manualmente. El StorageClass se define de la siguiente manera:

 Página 35 de 65

StorageClass kafka-ebs auto mode
apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: kafka-ebs

provisioner: ebs.csi.aws.com

volumeBindingMode: WaitForFirstConsumer

reclaimPolicy: Retain

parameters:

 type: gp3

5.4. Procedimiento de despliegue de Módulos

5.4.1. Instalación de OHIEN con helm

Instalación OHIEN con helm

Se puede consultar el apartado 00 Requisitos de instalación donde se explica la instalación
con helm,

1. Obtén el archivo de valores por defecto, para ello utiliza el siguiente comando.

helm show values onesait-healthcare-helm-repo/onesaithealthcare-iengine-chart >

values_ohien_iengine.yaml

 2. Edita values_ohien_iengine.yaml generado en el paso anterior. En nuestro ejemplo

utilizaremos nano para añadir los parámetros necesarios (se guarda con CTRL+O y se sale

con CTRL+X) o se puede usar cualquier otro editor con el que esté familiarizado:

nano values_ohien_iengine.yaml

Estos son los parámetros que requiere el chart, se explica a continuación el valor que se
debe informar, los parámetros que no se mencionan en esta lista es porque tienen valores
por defecto que en la mayoría de los casos no es necesario modificarlos:

global

• `global.registry.host`: (Obligatorio) El hostname del registro de contenedores
donde están las imágenes (ejemplo: dock.sdtr.indra.es, index.docker.io, etc.).

• `global.registry.project`: (Obligatorio) El proyecto o namespace dentro del registro
donde están las imágenes.

• `global.domain.protocol`: (Obligatorio) Protocolo para acceder al dominio,
normalmente `http` o `https`.

• `global.domain.host`: (Obligatorio) El nombre de dominio o IP del host donde se
expondrán los servicios.

• `global.domain.port`: (Obligatorio) Puerto de acceso al dominio. Usa 80 para HTTP
o 443 para HTTPS.

http://index.docker.io/

 Página 36 de 65

• `global.istio_enabled`: (Opcional) Si usas Istio para malla de servicios, pon `true`.
Si no, deja `false`.

onesaithealthcare_ohien_kafkaien_chart

• `onesaithealthcare_ohien_kafkaien_chart.image.tag`: Versión de la imagen
Docker de KafkaIEN. Por defecto `4.0.0`.

• `onesaithealthcare_ohien_kafkaien_chart.kafka.createMode`: `verify` (no
reemplaza recursos existentes) o `create` (reemplaza si existen). Usa `verify` salvo
que sepas que necesitas sobrescribir recursos.

• `onesaithealthcare_ohien_kafkaien_chart.kafka.replicas`: Número de brokers
Kafka. Para entornos productivos, usa al menos 3 y cambia el tipo de
almacenamiento a `persistent`.

• `onesaithealthcare_ohien_kafkaien_chart.kafka.storage.type`: `ephemeral`
(datos temporales, se pierden al reiniciar) o `persistent` (datos se conservan). Para
pruebas, puedes dejar `ephemeral`. Para producción, usa `persistent`.

• `onesaithealthcare_ohien_kafkaien_chart.kafka.storage.size`: Tamaño del
volumen de almacenamiento (ejemplo: `2Gi`, `10Gi`).

• `onesaithealthcare_ohien_kafkaien_chart.kafka.storage.storageClass`:
StorageClass de Kubernetes a usar (ejemplo: `standard`, `kafka-ebs`). Puede estar
vacío en modo `ephemeral`.

• `onesaithealthcare_ohien_kafkaien_chart.kafka.storage.deleteClaim`: Si es
`true`, el PVC se elimina al borrar el release de Helm. Para producción,
normalmente se deja en `false`.

onesaithealthcare_ohien_kafka_connect_chart

• `onesaithealthcare_ohien_kafka_connect_chart.image.tag`: Versión de la
imagen Docker de Kafka Connect. Por defecto `1.2.8`.

onesaithealthcare_ohien_schemaregistry_chart

• `onesaithealthcare_ohien_schemaregistry_chart.image.tag`: Versión de la
imagen Docker de Schema Registry. Por defecto `5.0.0`.

onesaithealthcare_ohien_control_panel_chart

• `onesaithealthcare_ohien_control_panel_chart.image.backend.tag`: Versión de
la imagen Docker del backend del Control Panel. Por defecto `3.13.0`.

• `onesaithealthcare_ohien_control_panel_chart.image.frontend.tag`: Versión de
la imagen Docker del frontend del Control Panel. Por defecto `3.13.0`.

• `onesaithealthcare_ohien_control_panel_chart.replicas`: Número de réplicas del
Control Panel. Por defecto `0`

• `onesaithealthcare_ohien_control_panel_chart.timezone`: Zona horaria de la
aplicación. Por defecto `UTC`.

 Página 37 de 65

• `onesaithealthcare_ohien_control_panel_chart.elasticsearch_enabled`: Habilita
o deshabilita la integración con Elasticsearch. Por defecto `false`.

Importante:

Reemplaza todos los valores `<CHANGE_ME_...>` por los datos reales de tu entorno

antes de instalar.

Finalmente se instala con:

helm install -f values_iengine.yaml iengine onesait-healthcare-helm-

repo/onesaithealthcare-iengine-chart -n oh-modules

Se indicará que se ha instalado el chart (el tiempo puede ser elevado hasta que responda).

Se comprueba que los siguientes pods están en estado Running 1/1:
kafka-connect-xxxxxx (es decir un pod con el prefijo kafka-connect)

ohien-kakfa-<N> (apareceán tantos pods de esta forma como nodos de cluster kafka se haya
indicado en la instalación)

schemaregistry-xxxxxx (es decir un pod con el prefijo schemaregistry)

Con el comando:
kubectl -n <namespace de instalacion> get pods

5.4.2. Operaciones post-instalación

Una vez se ha instanciado el helm correspondiente y todos los módulos han desplegado

correctamente se deben realizar las siguientes tareas.

Configuración Posterior en HNCONF

Una vez desplegado el ecosistema, debe completarse la configuración del módulo
OHIEN dentro del sistema HNCONF.

Desde la dirección FTP Entregas, descargar el fichero de

(FTP ENTREGAS)
/oradata/Versiones_Producto_OH/OH_v3/OH_IEN_v3.14.0/hnconf/V4/total/OHCON_O
HIEN_202485.csv

Luego de ingresar en HNCONF, utilizar la opción de "Importar" y seleccionar el fichero:
OHCON_OHIEN_FIXED.csv.

 Página 38 de 65

Importación en HNCONF

1. Ingrese a **HNCONF**.
2. Diríjase a **Settings > Integration Engine**.
3. Haga clic en **Importar** y seleccione el fichero descargado:
 `OHCON_OHIEN_FIXED.csv`
4. Una vez importado, actualice los siguientes parámetros con los valores adecuados
según el despliegue actual.

Parámetros de Configuración

- GENERAL

Parámetro Descripción

`ohien.kafka_connect.namespace`
Namespace Kubernetes donde se despliega Kafka

Connect (normalmente: `oh-modules`)

- KAFKA

Parámetro Descripción

`ohien.kafka.config.connect.password`

Contraseña del usuario Kafka utilizado por

OHIEN.

Obtener desde el `Secret` llamado `ohien` en el

namespace correspondiente, revelando su valor.

Diríjase a **Settings > ISCORE

- ISCORE

Parámetro

Descripción

`ohien.url` Se debe cambiar el valor a: "${general.url}/ohien/api"

Finalmente arrancamos el módulo Control Panel, para ello ejecutamos el siguiente comando:

kubectl -n <namespace de instalación> scale deployment ohien-control-panel --

replicas 1

 Página 39 de 65

5.4.3. Instalación de Camel K con Helm

Prerrequisitos

Es necesario disponer en un docker registry donde se generarán las imágenes de las
integraciones desplegadas con Camel K.

Se debe crear un secret con las credenciales a dicho repositorio, la cuenta usada debe tener
permisos de pull y push.

Importante el secret debe tener como nombre "camel-registry" puesto que dicho nombre se
referencia en el chart de instalación.

kubectl create secret docker-registry camel-registry --docker-server=<host-del-

docker-registry> --docker-username=<user-docker-registry> --docker-

password=<pass-docker-registry> -n oh-modules

Instalación Camel K con helm

Se lanzaría el siguiente comando para obtener el ficheros de configuración por defecto.

helm show values onesait-healthcare-helm-repo/onesaithealthcare-ohien-camelk-

chart > values_ohien_camelk.yaml

Estos son los parámetros que requiere el chart, se explica a continuación el valor que se
debe informar, los parámetros que no se mencionan en esta lista es porque tienen valores
por defecto que en la mayoría de los casos no es necesario modificarlos:

• `ohien.image`: Indica la imagen Docker que se usará para la aplicación principal
(por ejemplo, Eclipse Temurin JDK 17).

• `ohien.toolImage`: Indica la imagen Docker que se usará para el entorno de
herramientas de compilación (por ejemplo, Quarkus Mandrel builder con JDK 21).

• `camel-k-operator.operator.enabled`: Activa (`true`) o desactiva (`false`) el
operador Camel K.

• `camel-k-operator.operator.image`: Indica la imagen Docker que usará el operador
Camel K.

• `integrationPlatform.registry.mode`: Define el modo del registro de contenedores
de la plataforma de integración. Los valores posibles son: `external` (externo) o
`local` (interno).

• `integrationPlatform.registry.address`: Dirección (host) del registro de
contenedores externo. Sustituye `<CHANGE_ME_REGISTRY_HOST>` por el
nombre o dirección de tu registro.

• `integrationPlatform.registry.organization`: Nombre de la organización o proyecto
dentro del registro de contenedores. Sustituye
`<CHANGE_ME_REGISTRY_PROJECT>` por el nombre de tu proyecto.

• `integrationPlatform.registry.secret`: Nombre del secreto en Kubernetes usado
para autenticarse en el registro (`camel-registry`).

• `integrationPlatform.registry.insecure`: Si lo pones en `true`, permite conexiones
no seguras al registro; si quieres que sean seguras, usa `false`.

 Página 40 de 65

• `maven.customRepo.enabled`: Activa (`true`) o desactiva (`false`) el uso de un
repositorio Maven personalizado.

• `maven.customRepo.id`: Identificador del repositorio Maven personalizado (por
ejemplo, `local-nexus`).

• `maven.customRepo.url`: Dirección (URL) del repositorio Maven personalizado.
Sustituye `<CHANGE_ME_REPOSITORY_URL>` por la URL de tu repositorio.

• `maven.customRepo.username`: Usuario para autenticarse en el repositorio
Maven personalizado. Sustituye `<CHANGE_ME_REPOSITORY_USERNAME>`
por tu usuario.

• `maven.customRepo.password`: Contraseña para autenticarse en el repositorio
Maven personalizado. Sustituye `<CHANGE_ME_REPOSITORY_PASSWORD>`
por tu contraseña.

Se edita el fichero `values_ohien_camelk.yaml` generado en el paso anterior. En nuestro
ejemplo utilizaremos nano para añadir los parámetros necesarios (se guarda con CTRL+O y

se sale con CTRL+X) o se puede usar cualquier otro editor con el que esté familiarizado:

nano values_ohien_camelk.yaml

Importante:
Reemplaza todos los valores `<CHANGE_ME_...>` por los datos reales de tu entorno

antes de instalar.

Finalmente se instala con:

helm install -f values_camelk.yaml camelk onesait-healthcare-helm-

repo/onesaithealthcare-ohien-camelk-chart -n oh-modules

 Página 41 de 65

6. Instalación Paquete Monitorización

6.1. Módulos que incluye

• Prometheus
• Grafana
• Dashboards

6.2. Prerrequisitos

­ Este chart se debe instalar en el namespace donde se encuentre instalado MDM.

­ Se debe haber instalado y configurado previamente el chart MDM

(onesaithealthcare-mdm-chart).

­ Si se desea tener persistencia de las métricas frente a reinicios de los pods se debe

disponer de un Storage Class con provisión dinámica.

­ Acceder a OHSSO, si no se tiene instalado el client oh-monitoring seguir siguientes

pasos, en caso contrario ignorar este punto.

 Acceder a Client Scopes y añadir los scopes (de tipo openid-connect): openid, groups.

 Importar el client oh-monitoring con el json:

 (FTP_ENTREGAS)

/oradata/Versiones_Producto_OH/OH_v4/sistemas_configuraciones_iniciales_v4/ohs

so/client-oh-monitoring.json

 Revisar que las redirectUris se corresponden con las del entorno (añadir también las

redirect uris que se vayan a asignar a prometheus y grafana).

 Acceder a User Federation y en hn-provider en la lista de Included clients añadir: oh-

monitoring.

­ Tanto si existía el client oh-monitoring como si se acaba de instalar, acceder a su

pestaña de credenciales, regenerar el secret y apuntarlo ya que se requerirá en

la instalación del chart.

­ En Openshift editar el SecurityContextConstraint anyuid y en la lista de users

añadirle:

 system:serviceaccount:<namespace-donde-se-instalara_el_chart>:oh-prometheus

 system:serviceaccount:<namespace-donde-se-instalara_el_chart>:oh-grafana

 Por ejemplo:

 system:serviceaccount:oh-modules:oh-prometheus

 system:serviceaccount:oh-modules:oh-grafana

­ Comprobar que la NetworkPolicy cluster-network-policy-<namespace_instalacion>

contiene los puertos: 9090, 9091 y 3000.

 Página 42 de 65

6.3. Procedimiento de despliegue de Capa de Persistencia

No aplica ya que los módulos desplegados no requieren de base de datos.

En caso de querer habilitar la persistencia de prometheus, como se indica en los

prerrequisitos, se deberá disponer de un StorageClass con provisión dinámica.

6.4. Procedimiento de despliegue de Módulos

Consultar la guía general de prerrequisitos donde se indican varias alternativas para

registrar el repositorio helm e instalar el chart.

El repositorio se encuentra en:

https://nexus.devops.onesait.com/repository/onesait-healthcare-helm-charts

Se deberá disponer de credenciales para poder acceder al mismo, dichas credenciales

serán proporcionadas por el equipo de Onesait Healthcare.

6.5. Operaciones post-instalación

1. Verificar el acceso a prometheus con la URL <url_oh_modules>/prometheus y que en la

sección Status -> Target se están alcanzando los endpoints de métricas de Kafka, OH

Modules y OHSSO.

2. Verificar el acceso a grafana con la URL <url_oh_modules>/grafana y que en la sección

dashboards aparecen los paneles correspondientes a los targets de prometheus y se

visualizan correctamente.

https://nexus.devops.onesait.com/repository/onesait-healthcare-helm-charts

 Página 43 de 65

7. Instalación Paquete Analytics

7.01. Instalación Módulo Ingesta

7.1. Módulos que incluye

• Módulo de Ingesta (OHDTS)

7.2. Prerrequisitos

Se deben cumplir los prerrequisitos generales y haber realizado los pasos indicados en la
guía correspondiente.

7.2.1. Prerrequisitos de Base de Datos

Se debe disponer de un gestor de base de datos MySQL que tenga visibilidad desde los
nodos worker del clúster de Kubernetes en el que se desplegará el módulo.

Tener creados los siguientes esquemas con sus tablas correspondientes (No es un
prerrequisito necesario para la instalación, pero si para la ejecución correcta de este
módulo.):

• us_hdr
• us_hnatna
• us_hnaut
• us_hncat
• us_hncard
• us_hnpob
• us_ohbpm

7.3. Procedimiento de despliegue de Capa de Persistencia

Si la capa de persistencia va sobre MySql, se creará el modelo de datos del módulo
OH_DTS:

[FTP_ENTEGRAS]
/oradata/Versiones_Producto_OH/OH_v4/OH_DTS_v[version]/bbdd/total/mysql

7.4. Procedimiento de despliegue de Módulos

Para instalar el módulo del BI se empleará el chart de Helm
correspondiente, onesaithealthcare-dts-chart.

Se pueden consultar los prerrequisitos generales donde se indica el repositorio helm a
usar, así como distintas formas de instalación.

La instalación con helm client se realizaría con los siguientes comandos.

 Página 44 de 65

Obtenemos el values.yaml por defecto de DTS:

helm show values
helm show values onesait-healthcare-helm-repo/onesaithealthcare-dts-chart >

values_dts.yaml

Se edita el fichero obtenido y se informan los valores de los campos que se quiera dar a la
instalación.

Se deben tener disponibles los datos de la base de datos (host, puerto, usuarios y
passwords) así como conocer el dominio con el que se exponen los módulos.

Estos son los parámetros que requiere el chart, se explica a continuación el valor que se
debe informar, los parámetros que no se mencionan en esta lista es porque tienen valores
por defecto que en la mayoría de los casos no es necesario modificarlos:

• global.domain.gateway_type: k8s_gateway o istio, para indicar si el gateway que
se ha configurado es de la api general de kubernetes (gateway.networking.k8s.io/v1
) o de la api de istio (networking.istio.io/v1beta1)

• global.docker.registry.host: Host del repositorio docker donde se encuentran las
imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: docksdtr.indra.es)

• global.docker.registry.project: project del repositorio docker donde se encuentran
las imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: multhn_cmhn20_2)

• global.docker.registry.secret: Secret con las credenciales de acceso al docker
registry. (Por ejemplo en nuestro caso el secret sería: oh-docker-creds)

• dts.module.app_name: Nombre de la aplicación. Por defecto sera oh-dts
• dts.module.schedule: Periodicidad de ejecución del cronJob. Se debe poner en

formato crontab.
• dts.module.max_days: Indica los días a ingestar a partir de la fecha final del último

periodo ingestado. Será 0 si se quiere ingestar todo.
• dts.module.start_date.value: Fecha de inicio de la ingesta para su primera

ejecución. Con esto hacemos que la primera ingesta empiece en la fecha que mejor
nos convenga, evitando así ingestar periodos en los que no hay datos.

• dts.module.cfg.(insercion,extracion,routes).deploy: Check para indicar si se
quieren desplegar los ConfigMaps de inserción, extracción y routes. Por defecto lo
dejamos a true

• dts.database.type: Mysql. Indicamos el tipo de BBDD a la que apuntamos

A partir de aquí se encontrarán las mismas propiedades de BBDD para el resto de
componentes de dts (datasource, iengine, datastore) lo indicamos de forma genérica para
no repetir:

• dts.database.<MODULO>.driver: Driver de conexión a la BD. (para BD MySQL
sería: database.driverClassName:com.mysql.cj.jdbc.Driver)

• dts.database.<MODULO>.url: Cadena de conexión a la BD. (para BD MySQL
sería: jdbc:mysql://database_host:port/db_schema)

http://gateway.networking.k8s.io/v1
http://networking.istio.io/v1beta1
http://docksdtr.indra.es/

 Página 45 de 65

• dts.database.<MODULO>.username: usuario de BD para el módulo <MODULO>
(normalmente será el mismo que el esquema)

• dts.database.<MODULO>.password: password de BD para el módulo <MODULO>

Se instala el chart con el comando:

helm install
helm install -f values_dts.yaml dts onesait-healthcare-helm-

repo/onesaithealthcare-dts-chart -n <namespace de instalación, normalmente oh-

modules>

El comando helm indicará deployed. A diferencia de otros modulos que al desplegar levantan
un pod, DTS es un cronjob que lanza su pod a la hora que se haya indicado en el
despliegue, si todo va bien a la hora correspondiente se creara el pod de DTS, para ello
chequeamos con el siguiente comando:

kubectl get pods
kubectl get pods -n <namespace de instalación>

Comprobamos que se ha creado el cronjob con el siguiente comando:

kubectl get cronjobs
kubectl get cronjobs -n <namespace de instalación>

Se pueden consultar los logs del pod con el comando:

kubectl logs
kubectl logs <pod name> -n <namespace de instalación>

Para ver los eventos del pod se ejecuta el comando:

kubectl describe pod
kubectl describe pod <pod name> -n <namespace de instalación>

7.02. Instalación Framework BI

7.1. Módulos que incluye

• Módulo OHBI

 Página 46 de 65

7.2. Prerrequisitos

Se deben cumplir los prerrequisitos generales y haber realizado los pasos indicados en la
guía correspondiente.

7.2.1. Prerrequisitos de Base de Datos

Si los objetos creados por esta aplicación se van a persistir en una bbdd MySql, se debe
disponer de un gestor de base de datos MySQL que tenga visibilidad desde los nodos worker
del cluster de kubernetes en el que se desplegará el módulo. Crear un esquema vacío y un
usuario de acceso al mismo (el modelo de datos se creará automáticamente al arrancar el
módulo).

Para la creación del esquema se ejecutará el siguiente script 'Creación esquema OHBI.sql'
(FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_BI_v[VERSION]/bbdd/total
/mysql

La otra opción sería persistir estos objetos creados sobre la BBDD Derby embebida que
incluye el módulo, en este caso no habrá que hacer lo anterior expuesto como
prerrequisitos de base de datos.

7.2.2. Prerrequisitos PV

Si el storaceClass que se vaya a indicar en la instalación del módulo no tiene la capacidad
de provisionar dinámicamente el PV habrá que crear un volumen persistente manualmente,
este volumen persistente contendrá los drivers de conexión disponibles en el módulo.

En la siguiente ruta hemos dejado el yaml necesario para crear el PV correspondiente:
(FTP
ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_BI_v[VERSION]/src/opens
hift/oh-bi/PersistentVolume_driver.yaml

Si se va a usar Derby para la persistencia de los objetos creados por el módulo, y el
storageClass referenciado por el PVC no tiene la capacidad de provisionar dinámicamente
el PV, habrá que crear otro volumen persistente más.

En la siguiente ruta hemos dejado el yaml necesario para crear el PV correspondiente:
(FTP

 Página 47 de 65

ENTREGAS) /oradata/Versiones_Producto_OH/OH_v4/OH_BI_v[VERSION]/src/opens
hift/oh-bi/PersistentVolume_db.yaml

Tan solo habrá que cambiar en cada uno de los PV's a crear respecto a los entregados, lo
siguiente (acorde a lo proporcionado por el administrador de sistemas una vez haya creado
el filesystem para cada uno):

• la capacidad del espacio físico (storage),
• el servidor donde se encuentra este espacio físico (server)
• y su ruta (path)
• y el storageClassName por el vuestro

Si no se tiene un storageClass creado, se podrá dejar el mismo que trae los PV de la
entrega, creando antes el storageClass mediante el siguiente fichero:

(FTP ENTREGAS)
/oradata/Versiones_Producto_OH/OH_v4/OH_BI_v[VERSION]/src/openshift/oh-
bi/StorageClass.yaml

kubectl create StorageClass
kubectl apply -f StorageClass.yaml

7.3. Procedimiento de despliegue de Módulos

Para instalar el módulo OH_BI se empleará el chart de Helm correspondiente,
onesaithealthcare-bi-chart.

Se pueden consultar los prerrequisitos generales donde se indica el repositorio helm a usar
así como distintas formas de instalación.

La instalación con helm client se realizaría con los siguientes comandos.

Obtenemos el values.yaml por defecto de BI:

helm show values
helm show values onesait-healthcare-helm-repo/onesaithealthcare-bi-chart >

values_bi.yaml

 Página 48 de 65

Se edita el fichero obtenido y se informan los valores de los campos que se quiera dar a la
instalación.

Se deben tener disponibles los datos de la base de datos (host, puerto, usuarios y
passwords) así como conocer el dominio con el que se exponen los módulos.

Estos son los parámetros que requiere el chart, se explica a continuación el valor que se
debe informar, los parámetros que no se mencionan en esta lista es porque tienen valores
por defecto que en la mayoría de los casos no es necesario modificarlos:

• global.domain.protocol: http o https, es el protocolo con el que se exponen los
módulos (normalmente https)

• global.domain.host: Dominio con el que se exponen los módulos
• global.domain.gateway_type: k8s_gateway o istio, para indicar si el gateway que

se ha configurado es de la api general de kubernetes (gateway.networking.k8s.io/v1
) o de la api de istio (networking.istio.io/v1beta1)

• global.docker.registry.host: Host del repositorio docker donde se encuentran las
imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: docksdtr.indra.es)

• global.docker.registry.project: project del repositorio docker donde se encuentran
las imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: multhn_cmhn20_2)

• global.docker.registry.secret: Secret con las credenciales de acceso al docker
registry. (Por ejemplo en nuestro caso el secret sería: oh-docker-creds)

• bi.module.namespace: Namespace en el que estamos realizando el despliegue
• bi.keyclaok.realmname: Nombre del realm de keycloak. Por defecto seria oh-base
• bi.keyclaok.resource: Resource del keycloak. Por defecto seria hnrole
• bi.mail.ohbi_mail_configuration_host_name: Host del servidor de correo con el

que se enviarán los informes.
• bi.mail.ohbi_mail_configuration_port: Puerto del servidor de correo.
• bi.mail.ohbi_mail_configuration_from: Mail remitente desde el que se enviarán

los informes.
• bi.mail.ohbi_mail_configuration_password: Contraseña del mail.
• bi.database.type: MySql o Derby
• bi.database.mysql.ohbi_db_driver: Driver de la base de datos MySql (Ejemplo:

com.mysql.cj.jdbc.Driver)
• bi.database.mysql.ohbi_db_host: Host de la base de datos MySql
• bi.database.mysql.ohbi_db_port: Puerto de la base de datos MySql
• bi.database.mysql.ohbi_db_schema: Esquema de la base de datos MySql
• bi.database.mysql.ohbi_db_parameters: Parámetros de la base de datos MySql
• bi.database.mysql.ohbi_db_dialect: Dialecto de la base de datos MySql (Ejemplo:

org.hibernate.dialect.MySQLDialect)
• bi.database.mysql.ohbi_db_user: Usuario de BD para el módulo OHBI

(normalmente será el mismo que el esquema). En este caso sería: us_ohbi
• bi.database.mysql.ohbi_db_pass: Password de BD para el módulo OHBI.
• bi.persistence.enable_derby: true o false, si se va a usar la bbdd embebida

Derby que trae por defecto OHBI

http://gateway.networking.k8s.io/v1
http://networking.istio.io/v1beta1
http://docksdtr.indra.es/

 Página 49 de 65

• bi.persistence.storageclassname: Nombre del STORAGECLASS que vayamos a
usar para los VOLUMENES. Es un objeto que ya debe existir en el entorno con
independencia de este despliegue.

• bi.persistence.storage_derby: espacio en disco para la bbdd embebida Derby
usada para persistir los objetos creados con OHBI (si no usan bbdd externalizada)

Se instala el chart con el comando:

helm install
helm install -f values_bi-oh.yaml bi onesait-healthcare-helm-

repo/onesaithealthcare-bi-chart -n <namespace de instalación, normalmente oh-

modules>

El comando helm indicará deployed pero eso únicamente indica que ha sido capaz de crear
todos los recursos en el cluster, hay que esperar a que los pods terminen de levantar, para
ello chequeamos con el siguiente comando:

kubectl get pods
kubectl get pods -n <namespace de instalación>

Lo lanzaremos periódicamente hasta que veamos que todos los pods están en estado
Running con los contenedores Ready 1/1, es decir, toda la lista de pods debería acabar de
esta forma:

output kubectl get pods
NAME READY STATUS

RESTARTS AGE

<pod name>

1/1 Running 0 99m

...

En caso de que algún no se mostrara Running o presentara reinicios (columna Restarts
mayor que 0) se pueden consultar los logs del pod con el comando:

kubectl logs
kubectl logs <pod name> -n <namespace de instalación>

Para ver los eventos del pod se ejecuta el comando:

kubectl describe pod
kubectl describe pod <pod name> -n <namespace de instalación>

7.4. Operaciones post-instalación

Una vez se ha instanciado el helm correspondiente y haya desplegado el módulo
correctamente se deben lanzar los siguientes scripts que habilitará todo el mecanismo
necesario (perfiles, roles, etc) para poder logarse en este módulo.

 Página 50 de 65

Si el módulo MDM está en una bbdd MySql:

• OHONT_Permisos_OHBI_mysql.sql (FTP
ENTREGAS)/oradata/Versiones_Producto_OH/OH_v4/OH_BI_v[VERSION]/bbdd
/total/PermisosOHBI_MySql

• OHAUT_Permisos_OHBI_mysql.sql (FTP
ENTREGAS)/oradata/Versiones_Producto_OH/OH_v4/OH_BI_v[VERSION]/bbdd
/total/PermisosOHBI_MySql

Si el módulo MDM está en una bbdd Oracle:

• OHONT_Permisos_OHBI_oracle.sql (FTP ENTREGAS)
/oradata/Versiones_Producto_OH/OH_v4/OH_BI_v[VERSION]/bbdd/total/Permi
sosOHBI_Oracle

• OHAUT_Permisos_OHBI_oracle.sql (FTP ENTREGAS)
/oradata/Versiones_Producto_OH/OH_v4/OH_BI_v[VERSION]/bbdd/total/Permi
sosOHBI_Oracle

A continuación desde el módulo OHAUT, habrá que asignar a los usuarios con los que se
quiera logar en la aplicación, la profesión creada (sin especialidad) y uno de los roles creados
(ROL_OHBI_ADMIN o ROL_OHBI_USER, según se quiera que el usuario entre como
administrador o como usuario) y asociados a esa profesión. O asignar uno de los perfiles
creados (ADMINISTRADOR_OHBI o USUARIO_OHBI, según se quiera que el usuario entre
como administrador o como usuario) a un rol ya existente y que tenga ya asignado el usuario
con el que se desea entrar.

NOTA: Para que aparezca el acceso al módulo en el escritorio, hay que pedir al módulo
OH_DSK que creen ese acceso cuando el usuario logado tenga una de las dos
funcionalidades(permisos) que hemos creado (OHBI_ADMIN y OHBI_USER).

 Página 51 de 65

8. Instalación Paquete Process Management

8.1. Módulos que incluye

• Process Manager (OH_BPM): Designer / Todo List / Smart de procesos
• Program Manager (OH_PRM)
• Forms Builder (OH_GEN)

8.2. Prerrequisitos

• Se deben cumplir los prerrequisitos generales y haber realizado los pasos indicados
en la guía correspondiente.

• Deben instalarse previamente los paquetes MDM y DATA.
• Se debe crear un usuario en keycloack ohbpm para todo los accesos a BPM

8.2.1. Prerrequisito KEYCLOACK

Instalar cliente ohbpm o usar el ohsso para el uso de acciones offline (creacion de
actividades dinamicas o temporizadas)

Para instalar el client ohbpm vamos a "Clients" → "Create" → y ahi importamos el json que
se proporciona a continuacion.

ohbpm.json

{

 "clientId": "ohbpm",

 "surrogateAuthRequired": false,

 "enabled": true,

 "alwaysDisplayInConsole": false,

 Página 52 de 65

 "clientAuthenticatorType": "client-secret",

 "redirectUris": [],

 "webOrigins": [],

 "notBefore": 0,

 "bearerOnly": false,

 "consentRequired": false,

 "standardFlowEnabled": false,

 "implicitFlowEnabled": false,

 "directAccessGrantsEnabled": true,

 "serviceAccountsEnabled": true,

 "publicClient": false,

 "frontchannelLogout": false,

 "protocol": "openid-connect",

 "attributes": {

 "saml.force.post.binding": "false",

 "saml.multivalued.roles": "false",

 "frontchannel.logout.session.required": "false",

 "oauth2.device.authorization.grant.enabled": "false",

 "backchannel.logout.revoke.offline.tokens": "false",

 "saml.server.signature.keyinfo.ext": "false",

 "use.refresh.tokens": "true",

 "oidc.ciba.grant.enabled": "false",

 "backchannel.logout.session.required": "true",

 "client_credentials.use_refresh_token": "false",

 "require.pushed.authorization.requests": "false",

 "saml.client.signature": "false",

 "saml.allow.ecp.flow": "false",

 "id.token.as.detached.signature": "false",

 "saml.assertion.signature": "false",

 "client.secret.creation.time": "1700223643",

 "saml.encrypt": "false",

 "saml.server.signature": "false",

 "exclude.session.state.from.auth.response": "false",

 "saml.artifact.binding": "false",

 "saml_force_name_id_format": "false",

 "acr.loa.map": "{}",

 "tls.client.certificate.bound.access.tokens": "false",

 "saml.authnstatement": "false",

 "display.on.consent.screen": "false",

 "token.response.type.bearer.lower-case": "false",

 "saml.onetimeuse.condition": "false"

 },

 "authenticationFlowBindingOverrides": {},

 "fullScopeAllowed": true,

 "nodeReRegistrationTimeout": -1,

 "protocolMappers": [

 {

 "name": "Client IP Address",

 "protocol": "openid-connect",

 "protocolMapper": "oidc-usersessionmodel-note-mapper",

 "consentRequired": false,

 "config": {

 "user.session.note": "clientAddress",

 "id.token.claim": "true",

 "access.token.claim": "true",

 "claim.name": "clientAddress",

 "jsonType.label": "String"

 }

 },

 {

 "name": "Client ID",

 Página 53 de 65

 "protocol": "openid-connect",

 "protocolMapper": "oidc-usersessionmodel-note-mapper",

 "consentRequired": false,

 "config": {

 "user.session.note": "clientId",

 "id.token.claim": "true",

 "access.token.claim": "true",

 "claim.name": "clientId",

 "jsonType.label": "String"

 }

 },

 {

 "name": "Client Host",

 "protocol": "openid-connect",

 "protocolMapper": "oidc-usersessionmodel-note-mapper",

 "consentRequired": false,

 "config": {

 "user.session.note": "clientHost",

 "id.token.claim": "true",

 "access.token.claim": "true",

 "claim.name": "clientHost",

 "jsonType.label": "String"

 }

 }

],

 "defaultClientScopes": [

 "web-origins",

 "acr",

 "profile",

 "roles",

 "email"

],

 "optionalClientScopes": [

 "address",

 "phone",

 "offline_access",

 "microprofile-jwt"

],

 "access": {

 "view": true,

 "configure": true,

 "manage": true

 }

}

8.2.2. Prerrequisitos de Base de Datos

Se debe disponer de un gestor de base de datos MySQL que tenga visibilidad desde los
nodos worker del clúster de Kubernetes en el que se desplegarán los módulos.

A continuación, se indica como crear los usuarios y esquemas necesarios para los módulos
de Process Manager.

MySQL con acceso de administrador

Disponiendo de usuario administrador se pueden crear los usuarios y esquemas para los

módulos de Process Manager con los siguientes scripts:

 Página 54 de 65

- Process Manager

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_BPM_v[VERSION]/bbdd/mysql/1-ohbpm-database.sql

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_BPM_v[VERSION]/bbdd/mysql/2-ohbpm-user.sql

- Forms Builder

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_BPM_v[VERSION]/bbdd/totales/mysql/HNFOR_inicial_000_bduser_my
sql_ddl.sql

Sin acceso de administrador

Si no se dispone de acceso de administrador se tendrá que solicitar la creación de los
siguientes usuarios, cada uno de ellos con un esquema sobre el que tenga permisos y con
el mismo nombre del usuario:

• us_ohbpm (el usuario debe tener permiso "grant option" sobre su esquema para
poder asignar permiso a otros usuarios a objetos de su esquema)

• us_hnfor(el usuario debe tener permiso "grant option" sobre su esquema para poder
asignar permiso a otros usuarios a objetos de su esquema)

8.3. Procedimiento de despliegue de Capa de Persistencia

MySQL

- Process Manager

Con el usuario propio del módulo lanzar los siguientes scripts:

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_BPM_v[VERSION]/bbdd/mysql/3-ohbpm-camunda-engine.sql

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_BPM_v[VERSION]/bbdd/mysql/4-ohbpm-tables.sql

- Forms Builder

Con el usuario propio del módulo lanzar los siguientes scripts:

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_GEN_v[VERSION]/bbdd/totales/mysql/HNFOR_inicial_001_tablas_mys
ql_ddl.sql

 Página 55 de 65

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_GEN_v[VERSION]/bbdd/totales/mysql/HNFOR_inicial_002_ini_datos_
mysql_dml.sql

[FTP_ENTREGAS] /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_GEN_v[VERSION]/bbdd/totales/mysql/HNFOR_inicial_003_funciones_
mysql_ddl.sql

8.4. Procedimiento de despliegue de Módulos

Para instalar los módulos del paquete Process Management se se deberá realizar la
instalación del chart de Helm onesaithealthcare-bpm-chart. Las opciones de instalación
del chart en función del tipo de entorno vienen descritas en el apartado inicial de "Requisitos
de la instalación".

La instalación con helm client se realizaría con los siguientes comandos.

Obtenemos el values.yaml por defecto de BPM:

helm show values
helm show values onesait-healthcare-helm-repo/onesaithealthcare-bpm-chart >

values_bpm.yaml

Se edita el fichero obtenido y se informan los valores de los campos que se quiera dar a la
instalación.

Se deben tener disponibles los datos de la base de datos (host, puerto, usuarios y
passwords) así como conocer el dominio con el que se exponen los módulos.

Estos son los parámetros que requiere el chart, se explica a continuación el valor que se
debe informar, los parámetros que no se mencionan en esta lista es porque tienen valores
por defecto que en la mayoría de los casos no es necesario modificarlos:

• global.domain.protocol: http o https, es el protocolo con el que se exponen los
módulos (normalmente https)

• global.domain.host: Dominio con el que se exponen los módulos
• global.domain.gateway_type: k8s_gateway o istio, para indicar si el gateway que

se ha configurado es de la api general de kubernetes (gateway.networking.k8s.io/v1
) o de la api de istio (networking.istio.io/v1beta1)

• global.docker.registry.host: Host del repositorio docker donde se encuentran las
imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: docksdtr.indra.es)

• global.docker.registry.project: project del repositorio docker donde se encuentran
las imágenes de los módulos (por ejemplo para el caso del repositorio de onesait
healthcare el valor sería: multhn_cmhn20_2)

• global.docker.registry.secret: Secret con las credenciales de acceso al docker
registry. (Por ejemplo en nuestro caso el secret sería: oh-docker-creds)

• global.database.type: mysql
• dependencies.ohbpm/ohprm/ohgen: Por defecto se dejan en true.

http://gateway.networking.k8s.io/v1
http://networking.istio.io/v1beta1
http://docksdtr.indra.es/

 Página 56 de 65

• onesaithealthcare_ohbpm_chart.ohbpm.database.url: Cadena de conexión a la
BD. (para BD MySQL sería: jdbc:mysql://database_host:port/db_schema).

• onesaithealthcare_ohbpm_chart.ohbpm.database.user: Usuario de BD para el
módulo OHBPM (normalmente será el mismo que el esquema). En este caso sería:
us_ohbpm

• onesaithealthcare_ohbpm_chart.ohbpm.database.pass: Password de BD para el
módulo OHBPM

• onesaithealthcare_ohgen_chart.ohgen.database.url: Cadena de conexión a la
BD. (para BD MySQL sería: jdbc:mysql://database_host:port/db_schema).

• onesaithealthcare_ohgen_chart.ohgen.database.user: Usuario de BD para el
módulo OHGEN (normalmente será el mismo que el esquema). En este caso sería:
us_hnfor

• onesaithealthcare_ohgen_chart.ohgen.database.pass: Password de BD para el
módulo OHGEN.

Se instala el chart con el comando:

helm install
helm install -f values_bpm.yaml bpm onesait-healthcare-helm-

repo/onesaithealthcare-bpm-chart -n <namespace de instalación, normalmente oh-

modules>

El comando helm indicará deployed pero eso únicamente indica que ha sido capaz de crear
todos los recursos en el cluster, hay que esperar a que los pods terminen de levantar, para
ello chequeamos con el siguiente comando:

kubectl get pods
kubectl get pods -n <namespace de instalación>

Lo lanzaremos periódicamente hasta que veamos que todos los pods están en estado
Running con los contenedores Ready 1/1, es decir, toda la lista de pods debería acabar de
esta forma:

output kubectl get pods
NAME READY STATUS

RESTARTS AGE

<pod name>

1/1 Running 0 99m

...

En caso de que algún no se mostrara Running o presentara reinicios (columna Restarts
mayor que 0) se pueden consultar los logs del pod con el comando:

kubectl logs
kubectl logs <pod name> -n <namespace de instalación>

Para ver los eventos del pod se ejecuta el comando:

kubectl describe pod
kubectl describe pod <pod name> -n <namespace de instalación>

 Página 57 de 65

8.5. Operaciones post-instalación

8.5.1. Process Manager (OH_BPM)

Modificar el configmap ohbpm (ohbpm-back-cfg), cambiar el login y clave del usuario
offline creado antes de la instalación en el keycloack. SE DEBE PEGAR CODIFICADO EN
BASE64 (USAR LA PÁGINA https://www.base64encode.org/). Se haría con los comandos:

kubectl create secret
kubectl get configmap ohbpm-back-cfg -n oh-modules -o yaml > ohbpm-back-cfg.yaml

-- editar el fichero para aplicar los cambios indicados

kubectl apply -f ohbpm-back-cfg.yaml -n oh-modules

Configuración en módulo Settings

Se adjunta en la carpeta [FTP_ENTREGAS]
/oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_BPM_v[VERSION]/src/totales los siguientes archivos de configuración:

• OHCON_OHBPM_[X].csv que deberá importarse en la sección de configuración.
• OHCON_OHBPM_WL_[X].csv que deberá importarse en la sección de listas de

trabajo.

https://www.base64encode.org/

 Página 58 de 65

Configuración en módulo Ontology

Se adjunta en la carpeta /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_BPM_v[VERSION]/src/totales los siguientes archivos de catálogos (si
existiera algún fichero json más, importarlo también, se tratan de incrementales)

• OHONT_BPM_ActivityFilters.json filtros para las actividades de la smart
• OHONT_BPM_Exclusion_Reason.json motivos de exclusión
• OHONT_BPM_Instantiation_Reason.json motivos de instanciación
• OHONT_BPM_KPIs.json nombre de los kpi a controlar
• OHONT_BPM_Pause_Reason.json motivos para pausar un proceso
• OHONT_BPM_Process.json nombre de los procesos
• OHONT_BPM_Resume_Reason.json motivos de reanudación
• OHONT_BPM_Status.json estados de negocio
• OHONT_CM_BPMProcessExclusion.json conceptMap proceso y exclusión
• OHONT_CM_BPMProcessInstantiationReason.json conceptMap proceso y

motivo de instanciacion
• OHONT_CM_BPMProcessKpis.json conceptMap proceso y kpis de control
• OHONT_CM_BPMProcessStatus.json conceptMap proceso y estados de negocio

Configuración de permisos en módulo Users & Resources

Verificar que existen los siguientes permisos desde el aplicativo para el módulo del Process
Manager. Si no es así, darlos de alta desde el módulo Users & Resources, en la pestaña
Funcionalidades del menú Permisos.

Los permisos deben crearse vinculados al módulo OHBPM, con el ámbito Sistema y la
categoría Contexto profesional.

MÓDULO CÓDIGO DESCRIPCIÓN

OHBPM OHBPM_ADMIN ADMINISTRACION TOTAL

OHBPM OHBPM_PROCESS_LIST
Acceso al listado de procesos.
(Estadísticas)

OHBPM OHBPM_PROCESS_TODO_LIST
Acceso al listado de profesional
(TO-DO List) Seguimiento de
actividades

OHBPM OHBPM_PATIENT_ACCESS
Acceso al listado de procesos de
un paciente. (SMART)

OHBPM OHBPM_CAREPLAN_W
Escritura sobre instancias de
proceso

OHBPM OHBPM_CAREPLAN_R
Lectura sobre instancias de
proceso

OHBPM OHBPM_DEFINITION_R
Lectura sobre definiciones de
proceso

OHBPM OHBPM_DEFINITION_W
Escritura sobre definiciones de
proceso

 Página 59 de 65

OHBPM OHBPM_TASK_W
Escritura sobre etapas y
actividades

OHBPM OHBPM_TASK_R
Lectura sobre etapas y
actividades

OHBPM OHBPM_PROCESS_DESIGNER
Acceso diseñador de procesos y
subprocesos.

OHBPM OHBPM_PROCESS_DESIGNER_R
Acceso diseñador de procesos y
subprocesos. (SOLO
LECTURA)

OHBPM OHBPM_PROCESS_DESIGNER_PUBLISH
Permiso de publicación de
Procesos

OHBPM OHBPM_PROCESS_DESIGNER_ADMIN

Permiso de actualización del
modelo SIN VERSIONAR - Esta
acción debe realizarse con
cuidado

8.5.2. Program Manager (OH_PRM)

Configuración en módulo Settings

Se adjunta en la carpeta [FTP_ENTREGAS]
/oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_PRM_v[VERSION]/conf los siguientes archivos de configuración:

• OHCON_OHPRM_Propiedades.csv que deberá importarse en la sección de
configuración.

• OHCON_OHPRM_ListasDeTrabajo.csv que deberá importarse en la sección de
listas de trabajo.

8.5.3. Forms Builder (OH_GEN)

Configuración en el módulo Settings

Se adjunta en la carpeta [FTP_ENTREGAS]
/oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_GEN_v[VERSION]/src/totales los siguientes archivos de configuración:

• OHCON_HNFORM_[X].csv que deberá importarse en la sección de configuración.
• OHCON_HNFORM_WL_[X].csv que deberá importantes en la sección de listas de

trabajo.

 Página 60 de 65

Configuración en el módulo Ontology
Se adjunta en la carpeta /oradata/Versiones_Producto_OH/OH_v[MAJOR
VERSION]/OH_GEN_v[VERSION]/src/totales los siguientes archivos de catálogos (si
existiera algún fichero json más, importarlo también, se tratan de incrementales)

• OHONT_tipoFormulario.json tipos de formularios permitidos (escalas, hojas,
información adicional…)

• OHONT_FORM_OWNER.json propietarios que se pueden asignar a los formularios
• OHONT_idiomas.json idiomas para las traducciones
• OHONT_sexo.json sexo de los pacientes
• OHONT_tipo_profesional.json tipo de profesionales que se pueden asignar a los

campos
• OHONT_typeRegex.json listado de tipo de campos a validar
• OHONT_typeFhirPath.json listado de tipos de extracción estándar

Configuración de permisos en módulo Users & Resources.

Verificar que existen los siguientes permisos desde el aplicativo para el módulo del Forms
Builder. Si no es así, darlos de alta desde el módulo Users & Resources, en la pestaña
Funcionalidades del menú Permisos.

CÓDIGO DESCRIPCIÓN AMBITO CATEGORÍA

IMPRIMIR_INF Imprimir información SISTEMA Formularios

HNHDW_FORM
Visualización de Smart de
Cuestionarios

SISTEMA Formularios

HNFORM_MANAG_READ
Lectura administración
formularios.

SISTEMA Formularios

HNHDW_FORM_READ
Permiso consulta de
cuestionarios

SISTEMA Formularios

HNFORM_MANAG_DEACTIVATE Desactivar formulario SISTEMA Formularios

HNHDW_FORM_WRITE
Permiso de edición de
cuestionarios

SISTEMA Formularios

HNFORM_MANAG_PUBLISH Publicar formulario SISTEMA Formularios

HNFORM_REPORT_WRITE Gestionar informes. SISTEMA
Uso de
Informes

HNFORM_MANAG_TRANSLATE
Permite traducir
formularios.

SISTEMA Formularios

HNFORM_REPORT_READ Consultar informes SISTEMA
Uso de
Informes

HNFORM_MANAG_WRITE
Escritura administración
formularios.

SISTEMA Formularios

 Página 61 de 65

 Página 62 de 65

ANEXO: Configuración para varios entornos en el

mismo clúster de kubernetes

Esta guía describe como preparar el cluster de kubernetes para el despliegue de varias

instancias de Onesait Healthcare bajo la misma infraestructura. En escenarios donde se

quiera instalar diferentes entornos de pruebas (desarrollo / test / formacion / etc) y no se

dispongan de suficientes recursos, podría reutilizarse el mismo clúster de kubernetes

haciendo una separación lógica de los entornos para tener diferentes instalaciones

independientes de Onesait Healthcare

DISCLAIMER: Esta guía se debe aplicar si ya se han ejecutado todos los pasos indicados

en el epígrafe "2. Requisitos de instalación".

Esta configuración NO ESTÁ RECOMENDADA para entornos PRODUCTIVOS.

Preparación del nuevo namespace

En primer lugar, crearemos el nuevo namespace para la instalación de los módulos de la

solución. En este ejemplo usaremos el nombre oh-develop. Se puede crear mediante el

comando:

kubectl create namespace oh-develop

Para poder desplegar en este namespace las imágenes docker de los módulos de Onesait

Healthcare, se deberá crear un secret con las creden ciales para el docker registry, el nombre

de este secret debe ser: oh-docker-creds

kubectl create secret docker-registry oh-docker-creds --docker-server= --

dockerusername= --docker-password= -n oh-develop

Opción 1: Configuración del Gateway HTTP en el nuevo namespace

Si la configuración de HTTPS para el dominio que se expone se realiza en un balanceador

externo el Gateway se creará como HTTP y el balanceador es el que gestiona las conexiones

HTTPS y expone el certificado y vuelca las peticiones a los nodos worker del cluster. Una

vez traefik se encuentra instalado y configurado como Gateway Controller creamos el

Gateway importando el siguiente yaml (el Gateway se debe llamar "oh-modules-gateway" ya

que los charts de helm hacen referencia a dicho nombre tal cual):

apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 name: oh-modules-gateway

 namespace: <namespace>

spec:

 gatewayClassName: traefik

 Página 63 de 65

 listeners:

 - allowedRoutes:

 namespaces:

 from: Same

 name: <namespace>

 hostname: <host-expuesto, debe coincidir con el expuesto en el

balanceador>

 port: 8000

 protocol: HTTP

Por ejemplo, para el namespace "oh-develop" quedaría configurado de la siguiente forma:

apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 name: oh-modules-gateway

 namespace: oh-develop

spec:

 gatewayClassName: traefik

 listeners:

 - allowedRoutes:

 namespaces:

 from: Same

 name: oh-develop

 hostname: oh-develop.healthcare.onesait.com

 port: 8000

 protocol: HTTP

Creamos el Gateway:
kubectl apply -f oh-modules-gateway.yaml

Comprobamos que se ha creado el Gateway:
kubectl get gateways -n oh-develop

Opción 2: Configuración del Gateway HTTPS en el nuevo namespace

En caso de que el balanceador no confgure el HTTPS y el certificado entonces se tendrá

que crear el Gateway HTTPS. Para ello debemos disponer del certificado del dominio, tanto

la parte pública como la privada. Teniendo los ficheros crt (parte pública del certificado en

formato PEM incluyendo el raíz y CA intermedios si los tuviera) y key (parte privada del

certificado) se crearía un secret con dicho certificado con un comando de la forma:

kubectl create secret tls <nombre-cert> --cert=<nombre-cert>.crt --

key=<nombre-cert>.key -n oh-develop

Una vez creado el secret creamos el Gateway importando el siguiente yaml (el Gateway se

debe llamar "oh-modules-gateway" ya que los charts de helm hacen referencia a dicho

nombre tal cual):

apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 Página 64 de 65

 name: oh-modules-gateway

 namespace: oh-develop

spec:

 gatewayClassName: traefik

 listeners:

 - allowedRoutes:

 namespaces:

 from: Same

 name: oh-develop

 hostname: <host-expuesto, debe coincidir con el expuesto en el

balanceador>

 port: 8443

 protocol: HTTPS

 tls:

 mode: Terminate

 certificateRefs:

 - name: <nombre-cert>

 namespace: oh-develop

Creamos el Gateway:
kubectl apply -f oh-modules-gateway.yaml

Comprobamos que se ha creado el Gateway:
kubectl get gateways -n oh-develop

Configuración DNS para el nuevo entorno

La configuración actual tras la ejecución de esta guía es que disponemos del namespace

original "oh-modules" y un nuevo namespace "oh-develop" cada uno con su propio Gateway

HTTP.

Existe una única IP pública asociada a un balanceador (configurado en la guía 00.0

Requisitos de instalación).

Es necesario dar de alta en el servidor de DNS una entrada para el nuevo nombre de dominio

asociado al nuevo Gateway (atributo "hostname" del recurso "Gateway" creado en esta guía)

y asociarla a la IP actual.

De esta forma nuestro Gateway Controller (traefik) enrutará las peticiones al Gateway

adecuado según el "hostname" y se podrá tener varios entornos desplegados en diferentes

namespaces bajo el mismo clúster de kubernetes.

